Navigant Research Blog

Buy a Car, Get a Solar Array

— July 29, 2014

BMW Canada is betting that EV drivers want to further reduce their carbon footprint by going solar.  The company’s new electric i3 comes with an added purchase incentive for Canadians: a 10% discount on a home solar system (only available in Ontario, Quebec and British Columbia).  BMW partnered with Toronto-based Pure Energies Group, which will provide the solar home evaluations, panel installation, and relevant paperwork.

BMW Canada e-Mobility Specialist, Blair Dinsdale, stated in a press release that the solar energy offer “was designed to cover the exact amount of power you would use in the car, based on sun access in Canada.” According to Pure Energies Group, a 6 kilowatt (kW) system (24 panels) in Canada produces roughly 7,000 kilowatt-hours (kWh) of electricity per year.  According to the U.S. Department of Energy, the BMW i3 gets an estimated 100 miles of range per 27 kWh of electricity.  Thus, with a 6 kW solar system, a homeowner could drive the i3 nearly 26,000 miles per year, exclusively on home-produced solar energy.

A Literal Sunroof

A February 2014 survey conducted by the Center for Sustainable Energy in California found that 32% of EV owners in the Western U.S. already have solar panels on their homes.  While parts of Canada do not enjoy abundant sunshine, the province of Ontario does offer a feed-in tariff program to help offset the lack of year-round solar energy.

While combining solar with EVs is not new, the move by BMW to offer direct discounts on a home solar system is a first for the industry, and a smart one.  According to Navigant Research’s 2013 Energy & Environment Consumer Survey, 79% of Americans have an overall positive impression of solar energy and 61% share the same impressions for EVs.  While not all consumers of EVs purchase the vehicle for environmental reasons, the ones who do place great importance on where the electricity to power the car comes from.  And, as you’d expect, EV owners align very closely with solar buyers from a demographic perspective.

Combining solar with EVs makes so much sense that several automakers are now showing prototype EVs with solar panels directly integrated onto the roof of the vehicle.  The Ford C-Max Solar Energi and the Sunswift eVe have built-in rooftop panels.  If BMW’s approach proves successful, we could see Tesla and SolarCity creating similar offers in the future.  For more information on solar and EV synergy, check out Navigant Research’s research brief, Solar and Electric Vehicle Cross-Marketing Strategies.

 

With Thread, Nest Targets Wireless Energy Devices

— July 29, 2014

It’s been a busy year for Palo Alto-based Nest.  In January the firm was acquired by Google.  Last month Nest announced that it would acquire Dropcam, which offers a Wi-Fi-enabled portable camera that pairs with a cloud-based video monitoring service.  Days later the company debuted the Nest Developer Program, enrolling early partners Mercedes Benz, LifX, Whirlpool and Jawbone.

More recently, Nest introduced Thread, a personal area network (PAN) specification for device interconnectivity, to be regulated by the Thread Group, of which Chris Boross of Nest will be president.

Competing with other wireless specifications such as Zigbee, Wi-Fi and Bluetooth Smart, Thread is a low-power mesh-based solution that follows the IEEE 802.15.4 and IPv6 standards.

Much of the coverage (see here and here) of the Nest/Thread announcement has asked whether or not we really need another standard for networking in-home devices.  Thread, though, has some advantages over Wi-Fi and Bluetooth.  Wi-Fi uses a lot of, which makes it impractical for low-power battery operated devices such as thermostats or smoke alarms.  Bluetooth Smart is already installed in most smartphones and is low-power, but its range is limited.  Zigbee has encountered problems with vendors making proprietary adjustments to the specification, making it impossible or very difficult for devices to interoperate.

Looking for Options

The burgeoning number of entrants in the networking protocol space signals increased competition and perceived high value to be found in the market for connected devices.  For retail consumers, this means better products at lower prices that are easier to integrate into their connected life schema.

Unfortunately, for utilities looking to integrate energy-saving devices, such as smart thermostats and lighting controls, into their energy efficiency and demand response programs, multiple network protocol alliances present problems.  In order to implement these programs, utilities are subject to numerous technology restrictions and standards from state public utilities commissions or regional independent system operators.  OpenADR and Zigbee Smart Energy Profile are among these standards, and the further that protocol competition pushes the retail device market away from these, the narrower the options will be for utilities.

Sacramento Municipal Utility District (SMUD) has engaged in extensive research on different models of smart thermostats, hoping to identify those that are easy to use and will yield a stronger customer experience (as well as meet energy efficiency and curtailment goals).  However, any model that the utility looks at is subject to a number of technical requirements, and since these are set by regulating bodies, it’s unlikely that requirements will remain in stride with developments driven in the commercial market.  As it is, the economics of utility deployments are not always favorable to vendors, particularly in programs where more than one thermostat option is offered and sales volumes are uncertain.  It remains to be seen whether vendors will offer devices and platforms that can be used by the organizations that will need them to meet energy efficiency directives and load curtailment needs.

 

Energy Efficient Solutions for Retail Stores Begin To Emerge

— July 23, 2014

The retail landscape is in flux, to say the least.  Earlier this year, Staples announced the closure of 225 stores.  Troubled Best Buy isn’t closing any stores this year, but it was one of the several retailers to close stores in 2013).  Things aren’t all so bleak for big box retail, though.  Costco is in the midst of a 5-year plan to open 150 new stores.  Meanwhile, Walmart announced a strategy of shifting toward 10,000 SF to 40,000 SF grocery and convenience-type stores, away from 200,000 SF superstores.  Large retailers are rethinking their physical footprint.  Part of the shifting landscape comes down to the fact that brick-and-mortar stores, particularly warehouse-type stores, are costly to operate.  Moreover, the energy efficient operation of these assets is hindered by factors such as unpredictable occupancy, high ceilings, and vast open space.  However, smart building technologies are being developed for the specific challenges that face retail buildings.

There are numerous approaches to improving the energy efficiency of buildings (see Navigant Research’s reports Energy Efficiency Retrofits for Commercial and Public Buildings and Building Energy Management Systems).  But many of these aren’t appropriate for large, big box retail buildings.  A recent brief from Johnson Controls’ Institute for Building Efficiency provides a thorough analysis that quantifies the cost and payback of various building efficiency improvements for commercial office buildings.  It details 16 measures that represent 90% of possible energy savings.  Unfortunately, most of those do not address big box retail; they focus on using energy for building occupants, not for empty spaces.  That translates to providing cooling, lighting, and even power for computers only when occupants are in the space.  Though these measures work in office buildings, healthcare facilities, schools, and many other commercial buildings, they don’t provide the same opportunity to many retail spaces.

What does a smart retail look like?

Many retailers have aggressively pursued demand-controlled ventilation, lighting and controls upgrades, and advanced efficiency compressors for HVAC and refrigeration to reduce operating costs.  But the cutting edge of smart building technology for retailers focuses more on the consumer experience than on energy efficiency.  GE Lighting and BryteLight, for instance, are using next-generation LED fixtures to provide location-based services for retailers.  Similarly, the Open Group, a consortium that enables the achievement of business objectives through IT standards, has outlined a use-case of using sensors to provide real-time information to retail customers.

However, Massachusetts Institute of Technology’s SENSEable City Lab has recently unveiled a concept to use smart sensing technology to reduce energy consumption.  Local Warming creates a controllable heating zone around an individual occupant, leaving the rest of the space at a neutral temperature.  The solution relies upon a Wi-Fi-based motion tracking system that controls a system of mirrors and rotating motors to direct an infrared energy beam onto an occupant.  In the future, LED technology can further reduce the complexity of the system by allowing a more distributed source of infrared heat.

Local Warming Concept

(Source: SENSEable City Lab)

While the system is not specifically designed for retail, the most compelling application for Local Warming is clearly big-box retail.  These retail spaces are typically large and sparsely occupied.  Additionally, infrared heating has long been employed in large retail spaces.  Infrared heaters, which transfer heat through radiation rather than convection, warm occupants without having to warm the air.  In warehouse-like stores, with lots of air relative to the number of people in it, infrared provides an efficient method of heating.  Local Warming may signal a shift in the use of advanced sensor and location-based services in retail to the development of more advanced efficiency solutions.

 

European Grids Look to RF Mesh Networks

— July 23, 2014

Communications networks for smart grids have evolved very differently in Europe than they have in North America, with power line communications (PLC) and cellular technology, thus far, as the leading forms of communications for smart meter connectivity across the pond.  Here in the states, the availability of unlicensed (free) spectrum in the 900 MHz band has led to the leadership of proprietary radio frequency (RF) mesh solutions, such as those provided by Itron, Silver Spring Networks, Elster, Tantalus, Landis+Gyr, and others.

The European Commission, however, has taken steps in recent months to bring 48 European nations into alignment on spectrum policy across the continent.  Specifically, for smart meters and smart grid applications (and other machine-to-machine [M2M] applications), the European Conference of Postal and Telecommunications Administrations (CEPT) announced in February a framework whereby 5.6 MHz of spectrum, from 870 MHz to 875.6 MHz, will be set aside for unlicensed M2M uses, including smart meters and grids.  Details can be found in CEPT’s Electronic Communications Committee (ECC) Report 189.

Indoor Reading

CEPT cited several reasons for supporting interoperability, including the creation of economies of scale and cost reduction, reduction in the risk of cross-border interference, and greater flexibility.  The choice of sub-1 GHz spectrum, where propagation characteristics are stronger than at higher bands, makes the spectrum suitable for reading meters that may be placed indoors, even in basements — a common practice in European nations.

Ofcom, the United Kingdom’s telecommunications regulatory body, this year made amendments to its Wireless Telegraphy Act that allow for commercial operations on a license-exempt basis at 870 MHz to 876 MHz as of June 27, 2014; similar action is likely across the 48 nations that participate in CEPT.

This is good news for vendors, like those named above, but also for utilities across Europe seeking more flexibility in their smart meter and grid deployments.  RF mesh solutions are often less expensive than PLC for near area networks, although that varies widely depending upon the structure of the grid in the region as well as the topography.  Nonetheless, some smart meter/communications solutions providers have struggled financially over the past couple of years after ramp-up for American Recovery and Reinvestment Act (ARRA) funding created a spike in demand that has since fallen rather sharply.

Room to Grow

Europe is poised to be the next big growth area for smart metering, thanks to the EU’s 20-20-20 initiative, which a majority of European nations support.  Navigant Research estimates that current penetration of smart meters across Europe is just 15%, compared with more than 40% in North America.  While several nations have made significant progress in deployment (Italy, Scandinavia), Germany isn’t yet on board with the 20-20-20 initiative, and the United Kingdom and France are just getting rolling.  In Eastern Europe, there has been minimal activity to date, particularly in Russia, home to nearly 100 million meters.  For details on Navigant Research’s global smart meter forecast, look for our report Advanced Metering Infrastructure, slated for publication later this year.

The Market for Smart Meters, Europe: 2013-2023

(Source: Navigant Research)

Smart meter shipments in North America are expected to total 121 million between 2014 and 2023; that total is forecast to be 221 million in Europe.  That’s more than $18 billion in anticipated revenue for smart meters — a market of which surely every smart meter vendor will take note.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Energy Storage, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Utility Innovations

By Author


{"userID":"","pageName":"2014 July","path":"\/2014\/07","date":"7\/29\/2014"}