Navigant Research Blog

A Few Steps Closer to Autonomous Vehicles

— September 30, 2014

As engineers, scientists, executives, and government officials involved with transportation systems gather in Detroit this week for the annual ITS World Congress, the auto industry took another incremental step along the 60-plus-year road to autonomous vehicles.

In her keynote address, General Motors (GM) CEO Mary Barra announced that two of the technologies that are building blocks toward a driverless future will come to market in 2016.  The 2017 Cadillac CTS will be the first production car from GM equipped with vehicle-to-vehicle (V2V) communications technology.  Barra did not provide any details about exactly what sort of information would be exchanged between cars equipped with the technology, but messages will likely include alerts about brake applications, slippery road conditions, and position and speed as the vehicle approaches an intersection.

GM is the first automaker to announce that it will equip a production vehicle with V2V technology, but it’s likely that other premium brands will soon follow suit, especially now that the U.S. Department of Transportation has begun the process of writing rules to mandate the technology in the coming years.

Beyond Cruise Control

Barra also announced that a new Cadillac model that has yet to be revealed will be the first car in its lineup equipped with super cruise technology.  Super cruise is a semi-autonomous highway driving mode that combines advanced radar-based adaptive cruise control with upgraded camera-based lane-following capability.  In traffic, the system is able to bring the car to a full stop, automatically restarting as soon as the leading car moves.  GM first demonstrated super cruise to media in 2012 and has continued to refine the system.

In the days before the official opening of the ITS World Congress, Toyota held a separate advanced safety systems seminar where it demonstrated a system very similar to super cruise installed in the Lexus GS 450h.  The system also includes the capability to determine which lane the car is in to provide the driver with alerts for potential hazards, such as traffic merging from the left or exit-only lanes.  GPS doesn’t provide enough precision to determine which lane a vehicle is in, and Toyota engineers declined to provide specifics, but the system almost certainly uses the new higher-fidelity camera that is installed as part of the lane-tracking system.

Driver Still Required

Toyota also announced that this system would be coming to market very soon, but would not be as specific as GM.  During the technology demonstrations at the congress, Honda also demonstrated its own automated highway driving system, although it has not yet announced when the system will reach production.

The key to these systems is that they do not completely replace the driver, but simply reduce the workload during some of the more monotonous aspects of highway driving.  Unlike Google, which is extremely bullish on autonomous vehicles, traditional automakers, which are more familiar with the realities of putting high-technology cars in customers’ hands, are taking a much more cautious approach.

 

With 3D Technology, You Can Print Your Ride

— September 29, 2014

At the recent International Manufacturing Technology Show in Chicago, a car was printed in just 44 hours.  A sporty-looking black coupe, the Strati was built using a large-scale printer known as a Big Area Additive Manufacturing (BAAM) system.  A BAAM can build products that reach up to 8 feet in length, as opposed to the 1-foot dimension now available from desktop commercial 3D printers or at your nearby UPS Store.  Printing the body of the car in carbon-reinforced ABS plastic live at the conference, the demonstrators showed the utility of 3D printing for industrial and commercial products.  Not that cars can or will be mass printed anytime soon, but the cost and time in the engineering design process, from concept to design to prototype, can be reduced for high-end industrial products.  The likelihood of seeing a Strati roll down your street anytime soon is very, very small.  Perhaps if the Strati was printed with carbon fiber or other strong materials from new arrival MarkForged, coming across one in public would be more likely.

The use of 3D printing in the automotive industry is increasing, even though automakers have been using advanced manufacturing for decades.   Ford has used 3D printing for testing axles, brake rotors, and cylinder heads.   General Motors (GM) recently highlighted the use of 3D printing to prototype parts for the 2014 Chevy Malibu, both inside and out.  At GM’s Rapid Prototyping lab, the front end was redesigned, printed, and tested for aerodynamics in the wind tunnel, cutting costs and saving time.  Inside the car, designers are using 3D printing to test the visual look and accessibility of parts like internal trim and seat-back panels.  Yet, it took an act of nature for GM to make waves in the 3D printing world.  In early September, a rainstorm caused flooding in GM’s Rapid Prototyping facility in Detroit, Michigan, ruining equipment.  As a result, GM purchased over $6 million worth of 3D Systems products, including the iPro 8000 Stereolithography printer.  In the small 3D printing world, this is large, as it validates the value of the small form factor 3D printer.

Auto API

Other manufacturers are showcasing the use of 3D printing.  A scaled-down version of Toyota’s FT-1 concept car, presented in April at the New York International Auto Show, now seems like old news.  At first glance, the same appears true for Honda printing 3D versions of its concept cars.  Yet, Honda is going one step further by making the printing plans (the computer-aided design [CAD] files) available for free download, in the hopes that fans will print their own designs, creating a new kind of conversation between designers and consumers.

The most interesting deployments of 3D printing in cars are still in the concept stage.   As part of his master’s thesis at the Umea Institute of Design in Sweden, Erik Melldahl worked with BMW to design the Maasaica, an off-road coupe designed for rural Africans.  Printed from a biodegradable material composed of mycelium mushrooms and grass, the material can be grown in a number of days.  The car would collect ambient water for cooling and local uses, and it would be connected to the Internet.  Melldahl’s bushmobile highlights how 3D printing is changing industry – by enabling the redefinition of what a car is, how it’s made, and how it interacts with its environment and its users.

 

In Colorado, a New Solar Model Takes Root

— September 26, 2014

A few years ago the Yampa Valley Electric Association, the rural cooperative that serves communities across northwest Colorado, including the Steamboat Springs ski resort, signed an agreement with a company called Clean Energy Collective to build a community solar garden in the valley.

Headquartered in Carbondale, Colorado, Clean Energy Collective (CEC) has helped pioneer the community solar model, in which individuals and businesses can buy shares in solar power generation facilities rather than owning or leasing the solar panels themselves.  Paul Spencer, the founder and CEO of the company, calls it “solar for the masses.”

CEC signs a power purchase agreement (PPA) with the incumbent utility then pre-sells solar generation capacity in the form of subscriptions and finances construction using the PPA and the subscriptions, essentially, as collateral.  Subscribers don’t necessarily get the actual power flowing from the solar array; those electrons go onto the local power grid and appear as renewable energy credits on the customers’ bills. CEC makes money by charging subscribers a slight mark-up over the cost of producing the power.

Under the Smokestacks

As a way of shifting away from the antiquated, centralized, and coal-dependent power grid, community is a powerful model.  Founded in 2010, CEC now has 45 facilities spread across 19 utilities in 9 states. Spencer expects the number of facilities to double by the end of 2015.

In the Yampa Valley, though, CEC had a problem.

Craig, about 40 miles west of Steamboat in the mesa country of far west Colorado, has always been a coal town.  Most of the solar customers would certainly be in Steamboat, at the eastern end of the valley. But land in Steamboat is not cheap, and CECs business model is based, in part, on building solar arrays without paying too much for the land. Proximity to customers was a lesser concern.

As it turned out, there was an ideal site in Craig – literally in the shadows of the Craig power station’s smokestacks. CEC quickly signed up enough people to take 30% of the solar power the garden would produce. That’s when the problem arose.

The land the solar garden was on was owned by the city of Craig, but the mineral rights were held by Tri-State Generation & Transmission, the operator of the Trapper Mine outside town.  Tri-State officials said the rights were unlikely to be exercised — but they declined to formally cede them.  What’s more, some city council members were against the idea in principle, believing that it was harmful to the interests of the coal industry.  Spooked by the mineral rights issue, the title company on the land deal washed its hands of the deal. For a time, it appeared that the solar garden was dead.

Bridging the Divide

Paul Spencer and Terry Carwile, the mayor of Craig, weren’t ready to give up. “We begged, borrowed, and stole,” Spencer told me, chuckling. “We had to find a way to work around the mineral rights issue, and the town helped us do that.”

By the fall of 2014, a new, more amenable title company had been found, the deal was back in place, and CEC had resumed signing up customers.  In coal country, a truce had set in.

“Solar is not the replacement for coal,” said Spencer. “It’s another power solution that helps build a low-carbon future. In some small way, this project is an initial way to bridge the divide between Craig and Steamboat – between the coal-producing world and the renewable energies of the future.”

 

Tesla Breaks into Japan

— September 25, 2014

Last week Tesla opened its Japan sales operation with Elon Musk handing over nine keys to the first Model S owners in the country.  The event is significant because foreign automakers, especially U.S. ones, sell very few vehicles in Japan.  Although the country’s vehicle market officially opened to limited foreign participation in the 1970s, despite extensive automotive trade negotiations between the United States and Japan, the country has effectively remained closed.  Nearly 96% of all vehicle sales in the country come from Japanese companies, while the remaining 4% come from German automakers, with a barely visible blip of around 1,000 vehicles coming from GM.  This has been frustrating for foreign automakers – but it’s also hindering Japan’s plug-in electric vehicle (PEV) market.

As of 2013, Japan is the third-largest vehicle market and the second-largest PEV market in the world.  PEV sales were initially strong, thanks to infrastructure developments and vehicle deployments by Nissan, Mitsubishi, and, to a lesser extent, Toyota.  However, Toyota and Honda have since scrapped most of their PEV development programs, and no new PEVs were introduced in 2014, until Tesla did so last week.  To provide some context, there have been 24 different PEV models sold in Norway in 2014, while only 7 (including Tesla and three variations of the Mitsubishi i-MiEV) have sold in Japan.

Flat through ‘14

As a result, despite significant growth in every other PEV market, PEV sales in Japan will likely remain flat in 2014, at around 30,000 units.  This means that the country’s market will fall to third behind China; it may also lose ground to Germany, France, Norway, and the Netherlands, winding up in seventh in 2014.  Given Japan’s significant foreign energy dependence issues (Japan essentially imports 100% of its oil), this is a problem.

PEVs have substantial energy efficiency improvements over conventional vehicle platforms that, if adopted en masse, could do a lot to reduce Japan’s dependency issues.  Additionally, the country’s subsidy program, large vehicle market, significant price differential between electricity and gasoline on a per mile basis, and well-developed public charging infrastructure present the optimum conditions for the PEV market.  Unfortunately, Japan’s traditionally isolationist national automotive policy is inhibiting its own national energy security and greenhouse gas (GHG) reduction goals.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"2014 September","path":"\/2014\/09","date":"12\/22\/2014"}