Navigant Research Blog

Renewed Interest in Older Forms of Energy Storage

— November 17, 2015

After recently receiving support from Governor Steve Bullock, a planned pumped hydro storage (PHS) project in Montana has moved one step closer to reality. While the Gordon Butte project still faces many hurdles on the road to development, it is being embraced by many in Montana as a way to help take advantage of the state’s abundant renewable energy resources. Located in remote Meagher County, the facility would add a 400 MW resource capable of storing excess wind energy to be released at times of high demand. Montana-based Absaroka Energy is developing the project, working to secure financing and permits, as well as an interconnection and partnership agreement with a regional utility.

This project is part of a trend of renewed interest in PHS and other forms of electro-mechanical energy storage. According to Navigant Research’s Energy Storage Tracker 1Q15 report, there are 42 PHS projects in various stages of development around the world, including 13 located in the United States. As the penetration of renewable energy increases globally, energy storage solutions of all types are emerging as efficient ways to manage fluctuating supply and demand. While advanced batteries are an ideal choice for managing the grid’s stability over short time periods, the economics of very long duration (6+ hour) energy storage often do not line up given the high upfront cost and limited lifetime of battery technologies. Thus, many grid operators are looking at alternative storage technologies to help align the output of renewable energy with times of peak demand.

Generation and Demand

A common issue with renewable energy is the mismatch between when energy is generated and when demand is highest; this is a particularly acute problem in remote areas or physical islands that are unable to import or export energy whenever it is needed. In Montana and other areas, wind power is generally most productive at night (when there is minimal demand for energy) and is generally unavailable during peak demand hours when energy is needed most. The aim of Gordon Butte and other planned PHS projects is to allow this abundant wind energy to be shifted from when it is produced to times of peak demand, often in the evening, helping to ease utility concerns around balancing wind’s variable output. An economical means of storing large amounts of wind energy could allow Montana to fully capitalize on its immense natural resources, potentially allowing the state to export power to surrounding areas and greatly reducing the amount it spends on importing fossil fuels.

Despite the attractive economics and potential positive impacts PHS facilities can have, development of such large and complex infrastructure projects can be challenging, costly, and time-consuming. In addition to concerns regarding impacts on water resources and local wildlife, issues surround land-use and permitting have derailed past projects. These projects will face increasing competition from rapidly advancing battery technologies that are improving the economics of long-duration storage with more flexibility and less complex development processes.


California Incentive Program: Remaining Challenges for Energy Storage

— October 23, 2015

California’s Self-Generation Incentive Program (SGIP) has significantly advanced the state’s distributed energy storage market and has also highlighted the remaining challenges facing the industry. The program provides incentives for customers to install qualifying technologies including: small wind, waste-to-energy, generator sets and microturbines, fuel cells, and energy storage systems. SGIP has made California’s burgeoning energy storage industry one of the most advanced in the world. Storage systems currently receive incentives of up to $1.46 per watt, the second highest rate in the program. As a result, 224 storage systems have been deployed through the program, representing just over 11 MW of capacity. Despite this success, the industry still faces many challenges that are evident when analyzing the program’s project data.

Program Backlog

While an impressive number of systems have been deployed through SGIP, many projects have been cancelled, and many others currently sit idly by with little chance of being developed. There are currently 301 systems in the SGIP pipeline that were initiated before the start of 2014. These systems account for $25.1 million of held-up incentives that could otherwise go to more active projects. Given the program’s annual statewide budget of $77.1 million, these languishing projects account for 32% of the available incentives.

One reason for this backlog is the relative ease with which customers can begin working with vendors and reserve incentives through the program. Several companies active in California have employed a strategy of taking as many reservations as possible from prospective customers, regardless of the odds of the companies following through with an installation. While this strategy may improve a company’s market share for pipeline alone, it is detrimental to the overall program goals because it works against the other companies that focus efforts on the appropriate and more reliable customers. A potential fix for the program could include stricter milestones and required reservation timelines. Currently, a proof-of-project milestone is due 90 days after the start of most projects, meaning many systems have been in the pipeline for well over a year since that milestone was passed.

Remaining Challenges

The program’s large pipeline and rate of cancelled storage projects highlight challenges for both the program and the overall storage industry. The average ratio of systems deployed to systems that are eventually cancelled is only around 18% for leading vendors in the program. This results in a significant amount of capital resources for emerging companies that are lost on identifying and working with customers that never install systems. Furthermore, this dynamic highlights challenges with systems integration and installation that are faced by the relatively new industry. Changes in interconnection and installation requirements in different parts of the state—often not discovered until well into the development process—can add substantial costs to a project and significantly alter the overall economics, resulting in cancellations.

The large number of cancelled and delayed projects undoubtedly illustrates that the distributed storage industry as a whole must mature to improve the efficiency of operations and lower costs. Improvements should come naturally to the rapidly growing industry as customers become more educated and as increasing sales volumes lead to more standardization and streamlined processes, perhaps similar to California’s recent experiences with solar PV.


Utilities Explore Different Approaches to Residential Energy Storage

— August 31, 2015

Residential energy storage systems are anticipated to see exponential growth over the coming decade. The capacity of annual installations worldwide is expected to grow from 562 MWh in 2015 to 38,525 MWh in 2024, according to Navigant Research’s report, Community, Residential, and Commercial Energy Storage. While numerous storage system developers are lining up to begin selling residential batteries, utilities around the world are struggling to determine how to integrate these new distributed energy resources into their networks.

Utilities can receive numerous benefits from residential storage, including deferring investments in distribution grid upgrades and stabilizing circuits with high penetrations of solar PV. Additionally, the use of residential storage in an aggregated virtual power plant configuration helps utilities manage their financial risk by calling on distributed batteries to supply loads at times of peak demand, thus avoiding purchasing costly wholesale energy. Despite these benefits, many utilities are unsure how residential storage can be integrated into their networks. While much uncertainty remains, two major utilities have recently announced pilot projects employing very different business models.

Different Approaches

In August, Australian utility Ergon Energy announced a program with leading vendors SunPower and Sunverge to deploy residential storage systems tied to solar PV (initially in 33 Queensland homes). Through this program, Ergon will own the battery systems located behind the meter in customer homes. The utility claims these 5 kW/12 kWh lithium ion systems paired with a 4.9 kW PV array will supply around 75% of a home’s electricity needs. Participating customers will pay an $89 monthly fee, and Ergon claims they will save at least $200 per year by purchasing much less grid-supplied electricity. This utility-owned approach to residential storage represents one path, while a very different model is being tested across the Pacific.

California utility San Diego Gas & Electric (SDG&E) recently launched a pilot program to encourage homeowners to install residential storage themselves. In contrast to Ergon’s program, SDG&E would like its customers, or third-party vendors, to own the distributed systems. The utility will offer a tiered system of cash incentives and reduced rates that could, when combined with the state’s other incentives, render the storage free to customers. SDG&E envisions a rate that reflects forecasted system and circuit conditions on a day-ahead basis, and through hourly price signals, will incent both charging and discharging activity. Grid operators will then rely on energy stored in these batteries during peak demand, reducing the need to upgrade their equipment, and avoid utilizing more costly conventional generation sources. This approach can greatly improve the overall efficiency of the grid and help address the duck curve issues that arise from the ramping down of distributed solar PV systems during peak demand. A key feature of this model is that outside of peak demand periods, customers can utilize the battery however they want to maximize their consumption of solar energy, reduce demand charges, and ensure they have power during grid outages.

Potential Paths

The economics of both pilot programs will be determined over the next several years and will likely influence other utilities around the world. SDG&E has also proposed a separate pilot project that will deploy utility-owned batteries under its direct control, and it will compare that project’s performance against the tariff-based systems in terms of cost and effectiveness. Key questions for both utilities revolve around opening the residential storage market to additional participants and ensuring optimal benefits for both customers and grid operators. Despite the uncertainty, these pilot programs demonstrate potential paths forward for what is expected to be a massive global industry.


Smart Buildings Provide New Opportunities for Energy Storage

— July 15, 2015

As the energy storage industry continues to rapidly develop, systems in large commercial buildings are becoming one of the most attractive applications. Energy storage systems in these settings can offer reduced utility bills by continuously monitoring facility usage and taking action when demand is about to cross a specified limit, thus avoiding costly charges.  This business model has been successful in California, where high demand charges combined with incentives through the state’s Self-Generation Incentive Program (SGIP) make for an attractive return on investment.  As battery prices continue to fall, this model is likely to be replicated in other regions.  As explored in Navigant Research’s report, Community, Residential, and Commercial Energy Storage, global deployments of storage in commercial buildings are forecast to increase from 75.2 MW in 2015 to 1,773 MW by 2020, at a compound annual growth rate of 88%.

Emerging Opportunities

There is a natural synergy in energy service companies already providing building automation and energy management/efficiency solutions partnering with storage system providers or offering these solutions themselves.  These companies already have a deep understanding of building operations and energy usage, typically using energy management software, which can be upgraded relatively easily to include an onsite storage system to shave demand peaks.  Similar partnerships already exist between building management and solar energy companies that work together to reduce a facility’s energy costs.  Additionally, the increasing popularity of workplace electric vehicle charging is expected to result in a greater demand for storage systems, as they can help reduce the cost of providing day-time charging to employees and visitors.

New Partnerships and Offerings

The benefit of these types of partnerships has been demonstrated by recent announcements from leading storage and building energy management providers.  Notably, Tesla Motors, which recently announced a line of commercial energy storage systems, has partnered with demand response and energy management software provider EnerNOC.  EnerNOC’s energy intelligence software (EIS) will serve as the connection between batteries and a customer’s facility, enabling more effective demand charge management and demand response programs.  Tesla has also recently announced a partnership with Black & Veatch to provide a similar offering for larger commercial, industrial, and municipal facilities.  Black & Veatch has existing experience in this area, having already designed more than 24 MW of behind-the-meter energy storage capacity for commercial and industrial facilities.

Tesla is far from the only battery manufacturer targeting this emerging space.  Leading lithium ion provider LG Chem recently inked a similar partnership with energy management firm ONEnergy to offer lithium ion-based storage systems to commercial, industrial, and residential customers in northeast North America.  However, one of the most interesting players in this space is likely to be Johnson Controls.  The building and automotive systems giant already manufactures a line of battery products, and it is expected to soon be launching a lithium ion offering primarily targeting its existing building automation and energy management clients.  These existing relationships and the company’s expertise with building systems may give it a significant competitive advantage.  The coming years will likely see more partnerships of this nature as increasing attention is paid to this rapidly growing market.


Blog Articles

Most Recent

By Date


Clean Transportation, Electric Vehicles, Finance & Investing, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author

{"userID":"","pageName":"Alex Eller","path":"\/author\/aeller","date":"11\/29\/2015"}