Navigant Research Blog

Tesla Announcement Highlights Importance of Energy Storage Partnerships

— June 9, 2015

Boatbuilder_webTesla Motor’s April announcement of stationary energy storage solutions brought an unprecedented level of attention to the burgeoning energy storage industry, benefiting all stakeholders.  Competing products providing storage for residential, commercial, and industrial customers are already on the market, however.

These systems are designed for a variety of distributed energy storage applications—currently some of the fastest growing areas of the global storage market.  Navigant Research estimates that the global installed capacity of residential and commercial energy storage systems will grow from around 246 MW in 2015 to over 10,484 MW by 2024, with lithium ion (Li-ion) expected to account for 58% of total capacity.

The new product launches from Tesla highlight the growing importance of partnerships within the industry.  While Tesla provides a sleek battery module, the company does not offer bidirectional inverters or installation services.  The energy storage ecosystem is comprised primarily of companies like Tesla, with specialized offerings that must seek out partners to offer the complete solutions that customers demand.  (Navigant Research’s recent report Energy Storage Enabling Technologies analyzes the value chain within this industry.)

Tesla has established partnerships to complete their offering and provide storage systems for a range of end-users through channel partners.  The systems will be available through solar PV provider SolarCity, demand response aggregator EnerNOC, and engineering/construction specialist Black & Veatch, among others.  These partnerships each target different market segments, each requiring varying business models and product specifications.  With Tesla’s plans, competition has intensified in the distributed storage market, as several leading companies have recently announced new partnerships to offer similar integrated solutions.

Competition Heating Up

Partnerships are essential for most storage market players: battery manufacturers need supply agreements for their products and system integrators need component suppliers, while software and power electronics providers look for integrators and developers to get their products into complete solutions.

Electrical solutions provider Gexpro recently announced an agreement with battery manufacturer LG Chem, the power conversion provider for Ideal Power, and energy management software vendor Geli to offer a fully integrated battery energy storage systems (BESS) for commercial and industrial (C&I) customers.  This follows similar announcements from LG Chem to provide Li-ion batteries in the Northeast United States through an agreement with energy services company OneEnergy for C&I customers and Eguana for residential customers.

Other notable relationships recently announced include solar PV provider SunPower partnering with storage system vendors Stem and Sunverge to offer BESSs for their C&I solar customers.  Additionally leading Li-ion battery vendor Samsung SDI recently announced supply agreements with GreenCharge Networks, as well as with microgrid developer ABB.

Aside from battery vendors, other companies in the market are establishing similar relationships to solidify their offerings.  Notably, microinverter manufacturer Enphase, which is developing energy storage solutions utilizing their products, recent announced an agreement with battery vendor ELIIY.

Coming into Focus

While supply agreements and distribution partnerships have been developing in the stationary storage market for some time, more recent announcements targeting C&I customers are increasingly important.  In this segment it is crucial for companies to offer integrated solutions that are easy to operate and quick to install.  As a result, leading companies are joining forces to combine their specialties into the most effective offering.  We explore these relationships within the energy storage ecosystem through various reports including the recently published Navigant Research Leaderboard Report: Energy Storage System Integrators and an upcoming Leaderboard Report on lithium ion grid storage.

 

Offshore Wind Farm a Milestone for New England Energy

— May 18, 2015

At an industrial facility in Rhode Island, work has finally begun on what will likely be America’s first offshore wind farm. Originally proposed in 2008, Providence-based company Deepwater Wind’s project has overcome significant headwinds to receive permits, sign power purchase agreements, and finally begin construction. Made up of only five turbines, work on the relatively small project comes at a time when New England’s energy future faces uncertainty. The region generates almost no energy locally, being dependent primarily on natural gas and coal imports from other parts of the country. As a result, consumers are susceptible to volatile rates due to severe weather and supply constraints. A proposal to expand natural gas pipelines represents one way forward for the region, while the wind farm on Block Island represents a very different path.

As a former resident of Block Island, I have been intently following the progress of this project since its initial announcement. While working on the ferry to the mainland, I spent many hours on a nearly empty ship hauling truckloads of diesel fuel to be burned at the island’s one power plant. It comes as no surprise that island residents have to pay some of the highest electricity rates in the country, around $0.50 per kWh. These rates are significantly higher than even Hawaii, where expensive electricity has set off a rush of solar PV and other local energy generation.

Looking Ahead

The wind farm is a crucial component of Block Island’s energy future. Deepwater Wind claims that once operational, the farm could reduce island electricity rates by nearly 40%. Many island communities around the world have recently initiated ambitious plans to wean themselves off imported fuels completely by integrating locally generated energy. Local energy storage has been an important aspect of many islands’ plans to reduce dependence on imported energy, as discussed in a recent post by my colleague Anissa Dehamna. A great example of this can be found on Kodiak Island in Alaska. Global power electronics provider ABB worked with the local electric cooperative to install both battery and flywheel-based energy storage systems to help stabilize the output from the island’s wind turbines, and to store excess power generated at night to be used at times of high demand. The addition of energy storage on Kodiak Island has enabled up to 100% penetration for renewable energy and greatly reduced diesel consumption.

The development of the wind farm on Block Island will present great opportunities to demonstrate the value that other clean energy technologies can provide. The island is an interesting case due to the dramatically smaller population outside of the summer months. There are only around 1,000 year-round residents on the island, meaning demand for electricity most of the year is only a fraction of summer demand. For most of the year, the 30 MW output from the wind farm will be far more than is needed to power the island. By integrating local energy storage, the island could easily be a net exporter of energy through the soon-to-be-built transmission line connecting the mainland while only ever using locally produced clean energy. This can provide substantial benefits to residents through lower electricity rates and a much cleaner, more reliable power system.

 

Distributed Energy Storage, Low-Cost Financing a Powerful Combo

— April 14, 2015

Leases and third-party ownership models have helped the global solar PV market grow dramatically in recent years, and now they’re spreading to the energy storage market. ViZn Energy Systems recently announced that it will offer a similar financing program from LFC Capital, Inc. for ViZn’s distributed energy storage systems. While several companies, including CODA Energy, Stem, and Green Charge Networks, offer leases that feature a shared savings model on energy storage systems for commercial and industrial (C&I) customers in the United States, ViZn’s offering will be the first to target larger facilities (system capacities of 80–500 kWh of storage) with a different leasing model that aims to be more beneficial to customers.

ViZn takes responsibility for the system performance and the risks associated with its relatively new zinc/iron flow battery technology. This move demonstrates full trust in the system’s ability to greatly reduce a customer’s energy bills. The leasing program, available for C&I projects combining ViZn’s energy storage with solar PV and/or cogeneration energy systems, is designed to eliminate construction-period financing costs and simplify the installation process. In contrast to complex and lengthy power purchase agreements (PPAs), LFC’s 3-page lease will be familiar to customers accustomed to leasing general business assets and provide them with a predictable low-cost of ownership in 6 or 7 years.

Fees and Incentives

The primary benefit from using ViZn’s system will be ongoing cost savings from reduced demand charges and energy management expenses. Pairing storage with onsite solar PV can improve the economics of both systems by minimizing the consumption of grid power during peak demand periods, as well as hedging against any future net metering restrictions or export limitations. ViZn has also designed its systems to participate in ancillary service markets by aggregating its fleet of distributed storage systems to act as a single, dispatchable resource.

While the leasing program is available nationwide, ViZn anticipates most of the uptake to come from states with high electric rates and strong local incentive programs, such as California, Texas, and several states in the Northeast. The leasing program is not available for use outside the United States at this time. However, with prototype systems already running in the United States and Europe, the company is well-positioned to move into new markets in the coming years.

Innovative financing solutions can be an important component driving an emerging market to further growth. It will be interesting to see if this business model is adopted by other players in the storage industry, and what impact it may have on the market.

 

Energy Storage Diversity Highlights Regional Differences

— April 14, 2015

As the global energy storage industry continues to take shape, clear differences between regions are emerging. These differences reflect of a number of factors in each area, including electricity market structure, local manufacturing expertise, industrial and energy policies, and geographic characteristics. These factors have significant influence on the diversity of energy storage technologies being deployed in each region. Navigant Research’s Energy Storage Tracker 1Q15 tracks all storage projects around the world, allowing for deep insights into the impacts that market structure and policies have on each region’s market and technological diversity.  

Map of Energy Storage Technology Diversity (Number of Deployed Technologies), World Markets: 1Q 2015

North America is the most technologically diverse region for energy storage in the world, with 19 different technologies (20 including pumped storage) currently installed. This is a result of agencies and favorable policies in North America that are focused on encouraging innovation, such as the United States’ Advanced Research Projects Agency-Energy (ARPA-E) program, as well as various state policies. The U.S. federal government supports technological diversity through the Department of Energy (DOE) Loan Programs Office, which provides secure, competitive financing for innovative clean energy projects that utilize a new or significantly improved technology. As a result of these factors, lithium-ion (Li-ion)-based storage systems (the most popular globally) only account for 12% of deployed systems in North America and 13% of the regional pipeline, which includes projects utilizing 15 different technologies.

Local Specialties

Due to local manufacturing and engineering specialties, batteries are the primary choice for energy storage in Asia Pacific, making the region less technologically diverse than North America or Western Europe. Regulatory policies tend to favor domestic technologies and manufacturers. Notably, Japanese sodium sulfur (NaS) battery manufacturer NGK Insulators has benefited from close relationships with many utilities, resulting in an installed base of over 360 MW in the region. Given recent safety concerns regarding NaS systems and the opening of new markets, domestically produced Li-ion systems now lead the Asia-Pacific region. This is also a result of the region’s grid resiliency efforts (particularly in Japan), which encourage the adoption of smaller distributed storage systems, an ideal application for Li-ion systems. Overall, Li-ion-based systems represent 76.6% of the pipeline for the Asia Pacific region.

The technological diversity of Europe’s energy storage industry falls in between North America and Asia Pacific. Europe has a much greater diversity of market rules and policies compared with other regions. In general, European policies favor innovative/foreign technologies more than in Asia, and as a result there are eight different technologies in the European project pipeline.

Regional View

Germany, the leading market in Europe, has policies and market conditions (e.g, a high penetration of distributed solar, net metering restrictions) that favor distributed energy storage. As Li-ion systems are ideally suited for distributed installations, those batteries have begun to lead the German market despite a relatively diverse base of deployed technologies.

The Energy Storage Tracker explores the global energy storage landscape by tracking projects deployed and planned around the world. Navigant’s project database allows for in-depth analysis of regional markets to understand the impact of policy on technological diversity. Technological diversity can be a key indicator of the overall health of a market and the opportunities for innovative or foreign companies to compete.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Alex Eller","path":"\/author\/aeller","date":"7\/6\/2015"}