Navigant Research Blog

Take Control of Your Future, Part IV: Power Generation Shift

— May 20, 2016

Oil and Gas ProductionDale Probasco and Rob Patrylak also contributed to this post.

In the initial blog of this series, I discussed seven megatrends that are fundamentally changing how we produce and use power. Here, I discuss how the shift in the power generation fuel mix is changing our industry.

Generation Fuel Mix Shift Is Accelerating

The electric grid in the United States has relied heavily on nuclear and coal-fired plants to serve as baseload generation for the overall system. According to the U.S. Energy Information Administration (EIA), U.S. electric generating facilities expect to add 26.1 GW of utility-scale generating capacity in 2016. Most of these additions come from three resources: natural gas (8 GW), solar (9.5 GW), and wind (6.8 GW), which together make up almost 93% of total planned additions.

The Navigant Energy Market Outlook has projected this level of expansion in natural gas and renewable assets for several years. For 2016, Navigant expects higher natural gas (16.3 GW) and solar (13.2 GW) expansions than EIA is projecting. Navigant forecasts wind expansion will be lower at 6.1 GW, suffering a bit from extremely low natural gas prices and the ongoing decreases in installed costs for solar (decreasing faster than the installed cost of wind).

This shift toward natural gas and renewables will continue as many different factors affect generation fuel strategies, resource plans, and decision-making. Among these factors are sustained low natural gas prices (see Navigant’s natural gas price forecast), state and federal renewable incentives, the implementation of environmental regulations such as the Mercury and Air Toxics Standard, and the threat of new carbon legislation such as the Clean Power Plan (see also my earlier blog in this series on this topic). Today, this shift is accelerating even more because of increased interest from customers in renewable power (customer choice) and the rapidly declining installed costs, which are making renewables more competitive with traditional fuel sources (including coal and nuclear).

What Does This Mean to Generators?

As a result, the economics have changed and some of the existing (coal and nuclear) assets are experiencing eroded profit margins. These margins, in turn, are resulting in challenging economics and, in some cases, significant devaluation. Increasingly more generation assets are at risk of becoming stranded investments, as the fuel mix is shifting more quickly than anybody envisioned. Coal-to-gas switching has caused coal plants to consider retirements and, with low gas prices and the impact of renewables off peak, there is more pressure to decommission nuclear assets. There have been several early shutdowns, confirmed announcements, and threatened early shutdowns in recent years, including the recommendation from Omaha Public Power District (OPPD) management last week to discontinue operations at its Fort Calhoun nuclear station. Generators are reevaluating the role of each of their plants, as well as how and if the plants should fit into their portfolio, leading us to the following observations:

  1. Coal and nuclear plants operate at reduced revenue while still required to maintain system reliability/stability as long as their required economics are met.
  2. Coal plants (designed as baseload) are required to operate more as cycling units. This requirement drives up cost and reduces efficiencies, which may mitigate some of the environmental gains made as a result of more off-design operations.
  3. These economic pressures are driving numerous coal plants out of the market and increasing the possibility of stranded assets.
  4. Nuclear assets have been hurt as well and are requesting market assistance and incentives to keep operating. Savings measures such as Capacity Resource Adequacy payments and even state legislatures have been looking at approaches that can improve the economics for both nuclear and coal in order to maintain fuel diversity and keep these baseload plants running.
  5. Efficient gas plants are operating more in areas of ample gas supply and infrastructure.
  6. All generating plants are seeking ways to reduce operations and maintenance (O&M) costs while maintaining reliability.

As evidenced by Navigant’s Generation Knowledge Service (GKS), the average capacity factor of coal plants has declined by 20%-30%, which translates to a 20%-30% drop in gross revenue opportunity. Very few companies can easily adapt to this type of drop in gross revenue. At the same time, driven largely by increasing amounts of variable renewable generation, these coal plants have been asked to perform more as cycling plants, which drives up overall operating costs and reduces efficiency. To deal with the combination of lower realized revenue and higher operating costs, companies are evaluating their plants to determine if they can survive in the new world or if they should be repowered or retired. They are actively seeking new ways to reduce costs through fewer planned outages and higher operating efficiencies while maintaining high reliability to support the increased use of variable generation.

And to Make Things Worse: The Move from Big to Small Power

Additionally, with the rapid growth of distributed generation (DG), all central generation (coal, gas, nuclear, and wind) will face more changes in their role on the grid. DG installations are expected to reach 19 GW in 2016; thus, DG is growing faster than central station generation (26.1 GW additions, minus 7.9 GW retirements, using the referenced EIA forecast). On a 5-year basis (2015-2019), DG in the United States, with some variance by region, will grow almost twice as fast as central generation (98.4 GW vs. 57 GW).

Path Forward

As a path forward, generators must clearly define the mission of each generating unit to understand their new role and how to survive economically. To succeed, companies must do the following:

  1. Conduct a strategic review of generating assets and determine what, if any, changes need to be made in generation portfolio and/or in how these assets are managed under several regulatory and commodity pricing scenarios.
  2. Find ways to reduce O&M costs while maintaining the reliability required by the independent system operators during target operating periods (for plants that will continue to run in the near term).
  3. Have a strategy to manage significant reductions in staffing levels and loss of critical experience across the board, including dealing with the impacts on funding pensions and local economies when plants are retired.
  4. Plan for a changing workforce that will need to include deeper knowledge of digital technology and an understanding of how to optimize operations in a more variable power market.
  5. Aim to operate fossil assets globally, as companies that do so may find it easier to survive than generators focused solely on North America or Western Europe.
  6. Seek new sources of revenue to replace the capital-intensive position for large generating plants by considering investments in renewables and distributed energy resources.

An understanding of the above data points and how they affect your company and the rest of the industry is crucial to shaping our energy future. Navigant can help you develop and use this information to influence the key decision makers, regional transmission organizations, and state agencies that are shaping the future of the industry. If you’re not sitting at the dinner table shaping a future that works best for your company and your customers, then you just might be the entrée.

This post is the fourth in a series in which I will discuss each of the megatrends and the impacts (“so what?”) in more detail. My next blog will be about delivering shareholder value through mergers and acquisitions. Stay tuned.

Learn more about our clients, projects, solution offerings, and team at Navigant Energy Practice Overview.

 

Take Control of Your Future, Part III: Rising Number of Carbon Emissions Reduction Policies and Regulations

— May 16, 2016

Energy CloudMaggie Shober and Rob Neumann also contributed to this post.

My recent blog discussed seven megatrends that are fundamentally changing how we produce and use power. In the second part of the series, I focused on the power of customer choice and changing demands. Here, we will discuss the rising number of carbon emissions reduction policies and how this trend is fundamentally changing the power industry.

What’s Happening with Carbon Emissions Policies Globally?

The long-term impact of the Paris Climate Agreement will be significant. This agreement will focus on limiting global warming to well below 2°C (3.6°F) by the year 2100. Each nation sets its own target for reducing emissions and updates that mark each year. A record number of countries (175) signed the agreement on the first available day. Governments must now ratify and approve the agreement, which could take months or years. The agreement goes into effect once 55 countries representing at least 55% of global emissions formally join. It’s clear that the tone and tenor of the Paris Climate Agreement is providing a guiding light for nations to reduce emissions.

The biggest news was the full commitment of China. The country, together with United States, was one of the first to sign the final Paris Climate Agreement. The United States and China account for nearly 40% of global carbon emissions. It does appear that China is serious about reducing emissions, since the country has made significant investments in renewables, electric vehicles, green cities, and more. Already the world leader in wind power, China is set to overtake Germany this year in solar power (see chart below).

Renewable Energy Growth in Major Economies

Jan Blog 3

(Source: World Resources Institute)

We see that other countries are not waiting. This week, Germany announced a €17 billion ($19.2 billion) campaign—that’s right, billions—to boost energy efficiency. The ultimate goal is to cut the country’s energy consumption in half by 2050. This is part of meeting domestic and Paris Climate Agreement emissions reduction targets. The campaign could prove bearish for European Union (EU) carbon prices if it reduces demand for power and heating in Germany, the top economy (and emitter) of all the EU’s 28 member states.

Many other initiatives at the regional, country, state, and local levels are currently being designed and implemented in support of carbon emissions reductions, accelerated by the agreement. Importantly, the EU is seeking swift approval and implementation of the Paris Climate Agreement at the United Nation’s Bonn Climate Change Conference in Bonn, Germany this week.

U.S. Carbon Regulation

And then we have the Clean Power Plan (CPP). The CPP has been stayed by the U.S. Supreme Court until a final resolution of the case passes through the federal courts. Litigation may not be resolved until 2018, although it’s possible a resolution could be reached sooner. There has been a great deal of discussion on compliance with the CPP. Our analysis continues to show that cost-effective compliance includes a variety of options that are tailored to regional characteristics. A recent deep dive by Navigant into a southeastern state with modest renewable resources showed that trading with other states and developing energy efficiency programs and portfolios are key strategies for reducing overall compliance costs. Compliance strategies depend on existing resources; older coal resources on the margin for retirement are able to get a large bang for their buck on the emissions balancing sheet through replacement with gas, renewables, and energy efficiency.

Navigant also investigated the effects of deploying additional energy efficiency resources in order to decrease CO2 emissions in two regions: California and PJM. We found that additional energy efficiency reduces CO2 emissions, overall cost of compliance, and system congestion. The cost to serve load is reduced by 3%-5% in California and PJM. System congestion relief is also likely to occur, which further reduces the cost to serve load. This last point is important, since large, urban utilities are focused on reducing congestion points—and energy efficiency can be used as a solution.

Other Ongoing Developments

Even though the CPP is on hold, many individual states, cities, and utilities continue to move toward the CPP goals to reduce carbon emissions, plan for an advanced energy economy, and meet cleaner generation goals. The CPP parameters are being used as a guide for emissions reductions:

  • Last month, Maryland lawmakers approved the Clean Energy Jobs Act of 2016 (SB 921) by large majorities in both houses, increasing the state’s Renewable Portfolio Standard (RPS) to 25% by 2020.
  • As part of the New York Reforming the Energy Vision (REV) proceedings, the New York Public Service Commission introduced an order that requires placing a value on carbon emissions, focusing on distributed generation portfolios, and compensating customers for their distributed electricity generation.
  • Over the past year, six states led by Tennessee (plus Georgia, Michigan, Minnesota, Oregon, and Pennsylvania), the U.S. Department of Energy (DOE), and a few other national organizations have been developing a National Energy Efficiency Registry (NEER) to allow states to track and trade energy efficiency emissions credits for CPP and emissions compliance purposes.
  • Last week, San Diego announced its pledge to get 100% of its energy from clean and renewable power with a Climate Action Plan that sets the boldest citywide clean energy law in the United States. With this announcement, San Diego is the largest U.S. city to join the growing trend of cities choosing clean energy. Already, at least 12 other U.S. cities, including San Francisco, San Jose, Burlington (Vermont), and Aspen, have committed to 100% clean energy. Globally, numerous cities have committed to 100% clean energy, including Copenhagen, Denmark; Munich, Germany; and the Isle of Wight, England.
  • Meanwhile, many utilities are decommissioning or converting their existing coal plants and investing in utility-scale renewables, as well as distributed energy resources. As example, AEP is in the process of decommissioning 11 coal plants, representing approximately 6,500 MW of coal-fired generating capacity as part of its plan to comply with the Environmental Protection Agency’s (EPA’s) Mercury and Air Toxics Standards. The company is simultaneously making significant investments in renewables, with a total capacity of close to 4,000 MW by mid-2016.

What Does This All Mean?

The sustainability objectives of government, policymakers, utilities, and their customers are more closely aligned than ever before. In my last blog, I discussed how customer choice and changing customer demands are shifting toward supporting sustainability. States and regulators will continue to discuss how sustainable targets can be met without affecting jobs and the access to safe, reliable, and affordable power. And utilities will continue to evolve to support cleaner, more distributed, and more intelligent energy generation, distribution, and consumption.

Recommended action items for states and utilities include:

  • Understand the possibilities, costs, and full impacts of low-carbon generation and distributed energy resources (energy efficiency, demand response, and others).
  • Implement a workable framework and develop an integrated plan to move toward lower emissions goals, since it’s likely that decreased emission requirements will be in place in the near future.
  • Leverage existing state and neighboring utility designs and efforts to develop joint plans, policies, and goals.
  • Implement (pilot) initiatives that include renewable energy and other low-carbon generation into a reduced emissions framework while also incorporating energy efficiency and distributed generation as resources into the decreased emissions planning process.

This post is the third in a series in which I will discuss each of the megatrends and the impacts (“so what?”) in more detail. My next blog will cover shifting power-generating sources. Stay tuned.

Learn more about our clients, projects, solution offerings, and team at Navigant Energy Practice Overview.

 

Take Control of Your Future, Part II: The Power of Customer Choice and Changing Demands

— May 9, 2016

DataIn my last blog post, I discussed seven megatrends that are fundamentally changing how we produce and use power. In this blog, I discuss how customer choice and changing customer demands have become the leading drivers of industry transformation.

Move from “Big Power to Small Energy”

Customer choice is driving a large move from big power to small energy. More and more customers are choosing to install distributed energy resources (DER) on their premises. DER solutions include distributed generation, demand response, energy efficiency, distributed storage, microgrids, and electric vehicles. This year, DER deployments will reach 30 GW in the United States. According to the U.S. Energy Information Administration (EIA), central generation net capacity additions (new generation additions minus retirements) are estimated at 19.7 GW in 2016. This means that DER is already growing significantly faster than central generation. On a 5-year basis (2015-2019), DER in the United States is growing almost 3 times faster than central generation (168 GW vs. 57 GW). This trend varies by region because policy approaches, market dynamics, and structures vary. However, the overall move to small power will persist. In other words, the movement toward customer-centric solutions and DER will ultimately become commonplace worldwide.

Annual Installed DER Power Capacity Additions by DER Technology, United States: 2015-2024

Jan Blog Update(Source: Navigant analysis)

Customer Choice: Everything Is Changing

Customers want to self-generate and sell that power back to the grid. Customers also want new energy management products and services from their utility or other providers. The rise of the prosumer and active consumer movement is being fueled by three things:

  • A growing number of customers care about how and where their energy is generated and about the impacts of global warming.
  • Unprecedented and rapid technology advances are bringing greener energy choices directly to consumers.
  • New and disruptive entrants are rapidly emerging that give customers meaningful energy usage insights and options related to their homes, businesses, and transportation choices.

Where we see this movement picking up pace is in the increased number of commercial and industrial (C&I) customers that are choosing to implement their own more sustainable energy solutions. Amazon, Apple, Cisco, Google, Honda, Walmart, and other large energy users have increased their focus on installing onsite solar. Walmart has 142 MW of solar PV capacity at 348 installations in the United States, according to the Solar Energy Industries Association’s (SEIA’s) Solar Means Business 2015: Top U.S. Corporate Solar Users report. The retail company has a 100% renewable energy target, together with 57 others currently as part of RE100. And then there is the “Power Forward” movement, where 215 Fortune 500 companies are pursuing their own investments in local greenhouse gas (GHG) reductions, sustainability, or renewable energy initiatives. Power Forward 2.0 states that if incumbent utilities are not proactive (e.g., offer power purchases agreements, financing, rates, or project development), then they will be bypassed in favor of third-party energy providers (including non-regulated subsidiaries of incumbent utilities).

What Is New?

The focus on customer engagement and improving the customer experience is not new. In recent years, utilities have tried to improve the customer experience by introducing broader self-service, multi-channel options, and advanced information on energy products and usage. Such improvements include offering energy management applications like DTE’s Insight app.

What is new (and isn’t getting enough attention) are the actual implications of customer choice. With the increased availability of DER and new energy management technologies, the breadth and diversity of customer needs and interests that the utility will have to deal with are growing exponentially. Meeting diverse and changing customer demands is forcing utilities to rethink their role in the energy value chain. The range of possible services goes well beyond what they currently provide, including building energy management solutions, fast demand response, distributed generation, storage, microgrids, etc. Utilities must understand the full impact of all this on their customer service processes and systems. They must also understand how DER and advanced energy management solutions will affect their strategy, product innovation, business models, and the way they operate the grid. Taking an integrated and holistic approach is key.

Who Else Wants to Play?

Besides the incumbent utility, we see new entrants coming into the market that are focused on meeting the changing demands of large energy users. In the last 6 months, we have seen several announcements of new business models going after this market. Some examples are described below.

  • Edison International is launching a business that will help reduce energy costs, improve efficiency, and offer more environmentally friendly options for large energy users. The company’s new subsidiary, Edison Energy, aims to serve commercial buildings, data centers, retail centers, healthcare operations, and educational institutions nationwide.
  • Duke Energy’s Commercial portfolio president, Greg Wolf, has said, “In addition to utility-scale solar projects, we’ve also made investments in distributed generation and energy management systems for commercial and industrial companies.” Last year, Duke Renewables bought majority stakes in REC Solar (for commercial businesses) and Phoenix Energy (energy management systems and services for C&I customers).
  • GE Current combines GE’s products and services in energy efficiency, solar, storage, and onsite power with our digital and analytical capabilities to provide customers—hospitals, universities, retail stores, and cities—with more profitable energy solutions,” said Jeff Immelt, Chairman and CEO of General Electric (GE). Customers include Walgreens, Simon Property Group, Hilton Worldwide, JPMorgan Chase, Hospital Corporation of America, Intel, and Trane.

What Does All This Mean for the Incumbent Utility?

The incumbent utility (which includes the traditional competitive retailer not offering DER) has to adapt. Customers will look for better, greener, and cheaper alternatives, and more and more of these alternatives are becoming available. What’s more, the fight has started for the business of large C&I customers. If only a small percentage of large C&I customers switch over, the incumbent utilities will be in trouble. This will affect their revenue streams, roles, and the cost versus value of the centralized managed grid.

Facing declining revenue as customers consume less and produce more of their own power, utilities are faced with potential stranded generation (and eventually transmission and distribution) assets. This makes it even harder to make large investments (aimed at improving reliability and resilience) in their current grid while also making it more intelligent. And finally, they have to make investments in developing DER capabilities, offerings, and businesses. Given these challenges, utilities must play both defense and offense.

An updated defensive strategy will entail:

  • Engaging with customers to understand their customer choices and changing demands vis-a-vis price and reliability.
  • Engaging with regulators to find equitable ways to charge net metering customers for transmission and distribution services that fairly address the cost to serve.
  • Improving customer service and grid reliability at the lowest prices possible.
  • Developing utility-owned renewable assets to appeal to environmentally conscious customers.

Playing offense is even more important. Utilities must:

  • Create new revenue streams through the development of new business models, products, and services.
  • Transform their organizations and culture in order to fully integrate sales, customer service, and operations.
  • Upgrade the grid and operations to facilitate the integration of DER.

The above objectives can only be accomplished by implementing new business models that include developing, owning, and operating integrated DER such as community solar, customer-sited storage, microgrids, charging stations, building energy management systems, and home energy management systems. These goals also require utilities to provide third-party financing for DER and offer new products and services focused on energy efficiency and demand response.

There is no going back to the old ways of doing business. Utilities must lead—by playing both defense and offense—or they run the risk of being sidelined.

This is the second in a series of posts in which I will discuss each of the power industry megatrends and impacts (“so what?”) in more detail. My next blog will cover the rising number of carbon emissions reduction policies and regulations. Stay tuned.

Learn more about our clients, projects, solution offerings, and team at Navigant Energy Practice Overview.

 

Take Control of Your Future, Part I: Megatrends in the Utilities Industry

— April 29, 2016

Energy CloudThe pace and impact of change in the utilities industry is unrelenting. Each of the following megatrends is changing the way we produce and use power globally. Together, these megatrends are revolutionizing the industry.

  1. The power of customer choice and changing demands: More customers want to control their electricity usage and spend, as well as when and what type of power they buy. Customers want the ability to self-generate and sell that power back to the grid. Amazon, Apple, Cisco, Google, Honda, Walmart, and many other large energy buyers have increased their focus on sustainable energy solutions. This trend, in turn, is forcing new power purchase agreements with the incumbent utilities in order to minimize their risk of losing significant load. For example, a second (Google was the first) major technology company, Cisco, has confirmed that it is using Duke Energy’s Green Source Rider to provide clean energy for its North Carolina operations.
  2. Rising number of carbon emissions reduction policies and regulations: The impact of COP21 will be significant. Navigant believes that the “hold” on the U.S. Environmental Protection Agency (EPA) is temporary, and state governments and utilities are not waiting. They are taking actions now to be compliant. In fact, sustainability objectives between government, policymakers, utilities, and their customers are much more closely aligned than ever before.
  3. Shifting power-generating sources: U.S. electric-generating facilities expect to add more than 26 GW of utility-scale generating capacity to the power grid during 2016. Most of these additions will come from three resources: solar (9.5 GW), natural gas (8.0 GW), and wind (6.8 GW), which together make up 93% of the expected total additions. Existing assets (coal, but also nuclear) are devaluing and are at risk of becoming stranded as source shifting continues and newer natural gas and renewable generation sources come online.
  4. Delivering shareholder value through mergers and acquisitions (M&A): New industry ventures and M&A are happening at a rapid pace. Exelon’s acquisition of Pepco, Southern Company acquiring SoCoGas, Duke acquiring Piedmont Gas, Emera acquiring TECO, etc. In search for shareholder value through scale and increased synergies, this is a path that utilities will continue to explore.
  5. Regionalizing of energy resources (interstate, north-south, global): In order to provide reliable and affordable power, more energy resources are being regionalized. For example, PacifiCorp and Puget Sound Energy (PSE) and, later this year, NV Energy is joining California ISO. One of the main drivers is to achieve the benefits to manage local differences with regard to renewables, wind, and solar. Another example is Florida Power & Light’s (FPL’s) investment in natural gas exploration and production companies in Oklahoma and gas transmission pipelines to secure fuels for its natural gas combined cycle plants in Florida. Meanwhile, the global availability and movement of natural gas has created an abundance of natural gas. Some of the world’s biggest entrants into the growing global gas market have considered investing in power plants and other big projects now that their multibillion-dollar exporter terminals are about to open, executives said at the Columbia Global Energy Summit on April 27.
  6. Merging industries and new entrants: Several industries, including utilities, oil and gas (O&G), technology, manufacturers, OEMs, etc., are merging around areas like renewables, distributed energy resources (DER), energy management, smarter cities, and transportation. Navigant sees many cross-industry movements, and one of them is increased crossover investments between the electric utility and O&G industries. We see utilities investing in natural gas assets. And we see oil companies making investments in utilities. We also see both making investments in new areas of opportunity, like renewables, DER (distributed generation, energy efficiency, demand response, energy efficiency, etc.), transportation, smart infrastructure and cities, and energy management. That’s why the announcement in April by French supermajor Total is not a surprise to me. Total announced the creation of a Gas, Renewables and Power division, which it said will help drive its ambition to become a top renewables and electricity trading player within 20 years. According to a statement by the supermajor, “Gas, Renewables and Power will spearhead Total’s ambitions in the electricity value chain by expanding in gas midstream and downstream, renewable energies and energy efficiency.”
  7. The emerging Energy Cloud: Old infrastructure is being replaced and geared toward an increasingly decentralized and smarter power grid architecture known as the Energy Cloud. The Energy Cloud is an emerging platform of two-way power flows and intelligent grid architecture expected to ultimately deliver higher quality power. While this shift poses significant risks to incumbent power utilities, it also offers major opportunities in a market that is becoming more open, competitive, and innovative. Fueled by steady increases in DER, this shift will affect policy and regulation, business models, and the way the grid is operated in every single region of the world.

These megatrends cannot be underestimated. They are accelerating transformation in the energy industry, enabling the entry of new players, putting pressure on incumbent players, and altering traditional strategies and business models. Organizations will need to adapt, and there will be winners and losers as this transformation takes shape. My advice to senior leadership of energy companies is to take an integrated, holistic view of the opportunities and challenges that are flowing from these megatrends. Only then will you be able understand the full impacts and path forward. And that is the only way you can really take control of your future.

This post is the first in a series in which I will discuss each of the megatrends and the impacts (“so what?”) in more detail. Stay tuned.

Learn more about our clients, projects, solution offerings, and team at Navigant Energy Practice Overview.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Finance & Investing, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Transportation Program, Transportation Efficiencies, Utility Innovations

By Author


{"userID":"","pageName":"Jan Vrins","path":"\/author\/janvrins","date":"5\/26\/2016"}