Navigant Research Blog

Wind Project Construction Hits Record Pace Mid-Year

— August 31, 2017

The US wind market is in the midst of a wind plant construction boom. As of early August, 25,819 MW of wind projects were in various stages of advanced development or construction, according to the American Wind Energy Association’s (AWEA’s) U.S. Wind Industry Second Quarter 2017 Market Report. This represents a 41% increase in under construction projects over the same quarter in 2016 and the largest amount ever recorded by AWEA. The remarkable increase is the result of the long-term phaseout of the wind industry’s favored incentive, the Production Tax Credit (PTC).

The extension, which was secured by the industry through negotiations with Congress, is structured so that wind plants that began construction by the end of 2016 will receive 100% PTC value. Projects starting construction in 2017 will receive 80% of the PTC value, and the percentage will continue to decline through 2020 (2018: 60%; 2019: 40%; 2020: 0%). Most importantly, revised guidance provided by the IRS in May 2016 changed the construction window from 2 to 4 years. Therefore, projects on the tail end of the PTC window will be finishing construction through 2023.

Most companies seeking the maximum financial return on their wind projects aim to qualify their projects as having started in 2016 or 2017. The bar to qualify for start construction is not very high, which is one reason why so many projects are in various stages of advanced development and construction. To be considered under construction, a wind project developer must have started work of a significant nature on the project site or signed turbine or other equipment supply agreements representing at least 5% of the total expected project cost.

The Big Three

Other key highlights from AWEA’s quarterly report include an update to the installed capacity in 2017: a modest 357 MW during Q2 and 2,357 MW year-to-date. This brings the US total to 84,405 MW, with more than 52,000 turbines operating in over 41 states. The turbine vendor market share represented by installations so far in 2017 reinforces an ongoing trend: the big three turbine OEMs, Vestas, General Electric, and the recently merged Siemens Gamesa Renewable Energy (SGRE), represented 97% of all turbines installed in the first half of 2017.

Intense competition has led some vendors to reduce supply chain and manufacturing commitments in the US market. However, this is not a market that can be competitively sourced via a high proportion of imported supply chain. Massive towers, blades, and the nacelle drivetrain componentry ideally are manufactured within the country. The big three continue to have outsized commitments to domestic manufacturing or sourcing from vendors based in the United States, an approach that secures their substantial market shares.

Power Purchase Agreements

Corporate purchases of wind power and other renewables capacity continue to be a major trend exhibited in AWEA’s quarterly report. Power purchase agreements (PPAs) signed during the first half of 2017 totaled 1,697 MW; 37% of that capacity was through direct corporate purchase where companies like Apple, General Mills, T-Mobile, and others contracted PPAs. Notably, direct utility ownership represented 45% of capacity in advanced development. Direct utility ownership of wind plants has typically represented a low percentage of installed capacity. Yet, utilities are motivated to buy directly into wind when it is on a sale that is eventually going to subside.

Future US quarterly market reports can be found at AWEA’s market report link. Also worth noting is that AWEA recently launched an interactive map that tracks the growing number of wind projects online and the hundreds of manufacturing facilities supported by the wind industry.

 

First Dedicated Vessel for the US Offshore Wind Industry

— August 1, 2017

The US offshore wind market has been caught in the classic “the chicken or the egg” conundrum for years. The lack of purpose-built offshore wind installation jack-up vessels in the United States—necessary for the deployment of wind turbines in marine environments—has added uncertainty, complexity, and financial risk to the nascent offshore wind market in the country. It is also a key factor contributing to the slower-than-expected growth of offshore wind in the United States.

Multiple Issues

I wouldn’t attribute all the blame for the United States lagging behind Europe with offshore wind to this issue. European countries and China have been willing to provide generous regulatory and financial support for offshore wind, along with policies that are set up with a long-term framework. By contrast, the US market’s primary incentive mechanisms, the Production Tax Credit and Investment Tax Credit (PTC/ITC), have been enacted in short-term on and sometimes off again schedules for more than a decade.

Onshore wind developers with projects in advanced development can go from a turbine order to commissioned project in less than 8 months. The offshore wind industry, however, takes substantially longer for project development, turbine procurement, and project construction. Large wind projects in Europe typically require 2 years for construction. Prior to construction, the development and investment phases usually take at least 3-5 years.

That reality is the main reason offshore wind has been slower to take off than expected, but following at a close second is the lack of US-based jack-up vessels. These vessels have not been built in the United States because the offshore wind market demand has not been there to justify their pricey construction. Then why not simply bring a vessel or two from Europe?

The Jones Act

An antiquated maritime law from the 1930s called the Jones Act plays a major role in this issue. The law makes it illegal for vessels that are not built in the United States and crewed by American staff (a US flagged vessel) to deliver goods and conduct work from port to port. It is largely considered a protectionist measure to protect the US shipbuilding industry. One offshore project was commissioned last year, Deepwater Wind’s 30 MW Block Island wind farm off the Rhode Island coast. The Jones Act forced additional cost and complexity because the developers had to contract a jack-up vessel from Europe due to the lack of US vessels. Yet, the vessel could not touch US shores, where normally it would pick up the wind turbines, towers, and blades. Instead, Deepwater had to use smaller US flagged barges that towed wind turbine equipment out to the site, where it was transferred to the European jack-up vessel, thus increasing the cost, complexity, and risks of the project.

A Step Forward

One small but important step has arrived to mitigate the Jones Act problem. Two Texas-based companies active in the oil & gas industry, Zentech Inc. and Renewables Resources International (RRI), recently announced they would be the first to build an offshore wind construction jack-up vessel. The vessel will be a four-legged, self-propelled dynamically-positioned level 2 (DP2) jack-up vessel based on a US-built barge. Zentech plans to install four truss legs with spud cans, a proven oil & gas design, integrated in a newly built hull. It will be able to install in each port-to-site voyage three 6 MW-9 MW range wind turbines. Commissioning is expected in 4Q 2018.

The US offshore wind industry still faces challenges, but this recent announcement is a positive step toward minimizing the Jones Act as one of the industry’s impediments.

 

For the First Time, Solar Surpasses Wind

— June 20, 2017

2016 was a record year for solar with 76.6 GW installed—50% year-over-year growth from the 51.2 GW installed the year before. This brings solar to over 300 GW installed globally, just after exceeding the 200 GW mark in 2015, according to SolarPower Europe. This is great news for the broader renewables industries and for anyone concerned about climate change. However, it may raise some concerns within the wind energy industry, which for many years has vastly exceeded the installation rates of solar.

Since wind installed 54.3 GW (cumulative wind capacity stands at 484 GW), 2016 marks a turning point: the first time solar has exceeded wind energy’s annual installation rates. Solar only recently has been considered a serious competitor to wind, as solar PV module prices have fallen and installation rates have skyrocketed. This has led some notable developers (such as US-based Pattern Energy and Tri Global) to diversify from wind into solar, and turbine manufacturers Gamesa (now Siemens Gamesa Renewable Energy [SGRE]) and Suzlon to diversify into solar. SGRE landed a deal to build 130 GW of solar projects in India using inverters manufactured by Gamesa from factory capacity previously intended only for wind turbine power converters. Pattern is involved in a number of solar projects, including its first solar foray with 120 MW in Chile.

Wind continues to attack costs. It has decreased its cost of energy by 66% over the past 7 years (while solar decreased 85%), and its higher capacity factor of around 40% versus solar means wind will continue to maintain an edge in total megawatt-hours produced with the same nameplate capacity as solar. However, there are some key detractions to wind power that can’t easily be overcome. Two major impediments stand out: resource constraints and aesthetic impact.

Resource Constraints

Wind power is increasingly cost competitive in areas where there are good wind resources. In the United States, for example, the clear majority of wind capacity is installed in the vast central interior corridor spanning through Texas, Kansas, Oklahoma, Colorado, Iowa, Nebraska, Iowa, Minnesota, and the Dakotas. The consistent, low turbulence wind makes new wind plants cheaper than fossil fuel generation in those parts of the country.

While some of those states boast significant populations, the majority of the US population is located along the coasts where much less wind power is being developed because the resources are not as good (except for offshore—an entirely different topic). Solar doesn’t have the same challenge, as areas with strong solar resources are more likely to be colocated with population centers.

The Aesthetic Challenge

Wind turbines have increased their efficiency by evolving taller towers and longer blades. While this results in fewer turbines needed at a given project, it still results in a major visual change to the horizon. There are many people around the world that do not welcome such obstructions. Solar is arguably less visually obtrusive, as it takes up space on roofs in the residential setting or large fields in commercial settings.

Wind development has largely plateaued and global installations above 50 GW are expected annually for the next 10 years. Whether solar will begin to consistently eclipse those figures as it maximizes its core strengths is the big question.

Best of Both Worlds?

Regardless, one factor that will help the two technologies remain (to some degree) complementary instead of direct competitors is the different and complementary resource profiles. In most parts of the world, sunny months tend to be less windy and windy months tend to be less sunny. Analysis by the Fraunhofer Institute of Germany’s grid shows greater value and system stability with both wind and solar operating versus only one of the two technologies operating.

 

Will 2015 Be Global Wind Power’s High Water Mark?

— June 9, 2017

Will 2015 be the high water mark for annual global wind installations? Navigant Research compiled its data for 2016 in its annual World Wind Energy Market Update report, and an enormous amount of wind turbine capacity was installed—over 54.3 GW. But this was a 14% annual decrease from the over 63.1 GW installed the year before. The downturn is largely the result of China dropping from 30.2 GW installed in 2015 to 23.3 MW in 2016 due to changing incentive rates in that market. Unless there are further incentive changes that foster another huge annual rush in China, the 63.1 GW installed in 2015 is likely to be the high water mark within Navigant Research’s forecast out to 2026.

The reality is that the global wind energy industry is a huge market that is no longer subject to the high annual growth rates it experienced in its infancy. Rather, it is a mature market seeing steady installations across most country markets and regions. In 2016, stable installation rates occurred in most countries outside of China—from the long established European countries to new markets in Latin America, Asia Pacific, Africa, and elsewhere.

Maturation Evident

Europe installed nearly 14 GW of wind power capacity in 2016, almost the same amount as the year before. This represents 25.7% of global capacity installed in 2016. Europe also had the distinction (for the first time) of having more wind energy installed than coal plant capacity. North, South, and Central America combined installed 12.4 GW in 2016, representing 22.9% of the global market in 2016. This is down from over 14.5 GW of capacity the year before. The downturn was partly due to less capacity added during 2016 in Canada and Brazil.

The United States led all countries besides China in 2016, and the US market is in the middle of wind plant construction boom. A long-term extension of incentives ramping down through 2020 provides much sought after policy stability. It also supports continued capacity expansion that is expected to peak, with over 10 GW of annual wind projected to be brought online in 2020. While there were some concerns at the start of the new presidential administration, having a Republican back in office is not expected to alter this wind build cycle since it is based on a tax credit phaseout deal coded into law prior to 2017.

Wind power capacity continues to surge in Mexico as its policies and energy demand show the foundation for steady growth while energy deregulation secures a windy future. Chile and Uruguay saw strong installation rates to bolster capacity in Latin America.

The combined markets of South and East Asia represented 49.7% of global wind power capacity in 2016, down from 52.6% in 2015. China’s market strength again propelled global growth, with 23.3 GW, followed by India with 3.2 GW. India is experiencing steady and substantial year-over-year growth in installations and should prove to be a stable large market going forward, driven by new policy changes and insatiable energy demand from an enormous population.

Momentum Offshore

Offshore wind continued its successful build cycle of 2.2 GW in 2016, bringing the total cumulative capacity of offshore wind to 13.5 GW. The majority of capacity came from Europe, as expected, led by the Netherlands and Germany. China ramped up its offshore wind capacity in 2016 as well, with multiple turbine vendors installing capacity and pushing the country’s cumulative offshore wind online to over 1 GW.

Looking forward, wind installations in 2017 are projected by Navigant Research to increase slightly by 1.7% to around 55.3 GW. Annual installations are expected to average around 51.9 GW between 2017 and 2021. This is a downward revision from 54.2 GW from the 2016 World Wind Energy Market Update report due to lower installation levels expected in China and Germany.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Digital Utility Strategies, Electric Vehicles, Energy Technologies, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Transportation Efficiencies, Utility Transformations

By Author


{"userID":"","pageName":"Jesse Broehl","path":"\/author\/jbroehl","date":"9\/21\/2017"}