Navigant Research Blog

Utilities Send in the Drones

— February 19, 2015

Your local electric utility may be the next company to deploy unmanned aerial vehicles (UAVs), a.k.a. drones, in your community. Transmission and distribution utilities are planning to deploy fleets of drones for power line inspections in order to more rapidly identify foliage encroachments on power lines, storm damage, and overloading in both urban and remote areas.

These types of inspections typically have been completed using manned helicopters. Since the Northeast blackout in 2003, North American electric utilities have spent millions to fly helicopters over their power lines to meet new grid reliability standards. Drones offer a cheaper and more reliable alternative.

At the Consumer Electronics Show (CES) show in Las Vegas, a whole section of the exhibit floor was devoted to drone technologies. Forward-thinking utilities have picked up that point.

What They Need to Know

A recent article in Electric Light & Power discussed the utilization of light-reflecting imaging technologies that create 3D images of the environment, called Lidar, to more thoroughly monitor electric transmission rights-of-way. According to Duke Energy, “Lidar’s 3-D models tell us everything we need to know about loading on our lines and nearby encroachments.”

Innovative electric transmission and distribution operators have been working with the Federal Aviation Administration (FAA) to utilize UAVs across their systems. However, utilities won’t be piloting drones until the FAA finalizes rules that govern their safe operations in the National Airspace System. The FAA planned to finalize those rules by 2015 but is not expected to meet that deadline. Utility proponents suggest UAVs can make the nation’s infrastructure more reliable and secure, perhaps warranting an FAA exemption.

Unmanned Pilots

A number of pilot demonstrations of UAV applications and use cases have been occurring across the United States, notably with Duke Energy on the East Coast and San Diego Gas & Electric (SDG&E) in the west. The use cases for UAVs are not limited to transmission and distribution power line inspection; they also include critical functions such as:

  • Solar PV panel inspections to identify damages to PV panels and schedule maintenance across thousands of panels. UAVs can find individual damaged solar panels amid thousands by using thermal imaging to detect anomalous heat signatures.
  • High-risk jobs like scanning a wind turbine blade for cracks 400 feet in the air without human intervention.
  • Improved power restoration efforts in the aftermath of major storms. For example, in 2012, the Electric Power Research Institute (EPRI) suggested drones could assess damage and help bucket trucks and line technicians prioritize power restoration.

In 2014, the FAA granted SDG&E an experimental certificate, also known as a Special Airworthiness Certificate, for UAVs. That certificate allows SDG&E to use drones for research, testing, and training flights in lightly populated airspace in eastern San Diego County. “The unmanned aircraft system provides us with another tool in our electric and gas operations tool chest,” said Dave Geier, SDG&E’s vice president of electric transmission and system engineering.

 

Utility-Scale Energy Storage: The Next Killer App

— February 10, 2015

In recent years in the power sector, companies like C3 Energy and Space-Time Insight have been introducing groundbreaking applications that can provide powerful data and insights across the utility value chain, from the customer to the independent system operator (ISO). Looking back over the Navigant Research utility transmission and distribution technology forecasts in our syndicated reports—and our 10-year forecasts for those technologies—it’s clear that utility-scale energy storage is among the technologies undergoing the most dramatic transformations, thanks to these applications.

Since 2009, the California Energy Commission (CEC) and the U.S. Department of Energy (DOE) have invested millions of dollars in utility-scale storage through both smart grid demonstration project funds and Advanced Research Projects Agency – Energy (ARPA-E) R&D grants.

Next-Generation Investment

In December, Eos Energy Storage announced that it had won a $2 million award from the CEC to deploy and demonstrate a 1 MW grid-scale battery system at Pacific Gas and Electric’s (PG&E’s) Smart Grid Lab in San Ramon, California. The project, called Aurora, was the only advanced battery storage system recipient of grant funding.

According to Eos, its Aurora battery system “can be manufactured at a fraction of the cost of existing energy storage solutions.” The Edison, New Jersey-based company is joining with PG&E, the Electric Power Research Institute (EPRI), Lawrence Berkeley National Laboratory (LBNL), distributed energy storage technology pioneer Stem, and ETM Electromatic to carry out the project.

“This type of project deployment can meet the requirements of California’s utilities and industrial users at a price that will compete with gas peaking plants, providing both peak generation and infrastructure benefits,” said Philippe Bouchard, Eos vice president of Business Development, in a statement.

Strategy for Scale

Eos’ Aurora direct current (DC) battery, power electronics from ETM, and Stem’s real-time data analytics are being implemented at PG&E’s Smart Grid Lab in San Ramon.  EPRI is managing interconnection and systems integration requirements. LBNL will employ real-time grid simulation to assess “system benefits under dynamic load and renewable integration use cases.”

The Eos Aurora 1000/4000 battery system delivers 1 MW of electrical power for 4 hours, which is more than enough to mitigate peak power demands, thus avoiding costly investments in transmission and distribution upgrades. It also offers fast-response surge capabilities that can manage the intermittency of solar, wind, and other renewable energy grid assets.

Looking further down the road, so to speak, it’s clear that energy storage will advance thanks to major investment from car makers such as Tesla, which is placing its bets with the new Gigafactory in Nevada. Large volumes of mass-produced batteries will be essential to Tesla and other electric vehicle manufacturers. And this mass production strategy for battery technology also brings increased scale that may reduce deployment costs. With clever engineering, this strategy will help expand residential and utility deployments, as well.

 

In Detroit, a Utility Comes to the Rescue

— January 14, 2015

In early December, the municipal power system in Detroit had a major power outage that was thankfully restored by DTE Energy (DTE), the investor-owned utility that stepped in to lend a helping hand.  The Detroit municipal system supplies power to city buildings such as courthouses, hospitals, city offices, and schools, as well as critical local infrastructure such as traffic lights, municipal transportation, and fire departments.  Even the Detroit Red Wings hockey practices were disrupted by the power outage.  Fortunately, with the help of DTE, the outage was restored within 9 hours and life in Detroit was back to normal.

As news of the municipal power system outage spread, it was initially speculated that this power failure was another glaring example of the lack of ongoing investment in critical infrastructure that occurs when a municipality goes into bankruptcy.   The good news is that, as part of the bankruptcy process, Detroit will no longer run the electric system; DTE will begin running the grid over a 4-year transition period.  DTE’s deeper pockets will restore the high standards of operation for the Detroit municipal system.

The Beleaguered City

Detroit’s woes have been national news over the past 3 or 4 years, as illustrated by the many pictures of abandoned neighborhoods, factories, churches, and commercial buildings.  In fact, Detroit’s mayor, Mike Duggan, said at a news conference on Tuesday, December 2, 2014 that, “Today is another reminder of how much works we still have to do to rebuild this city, and the bankruptcy order doesn’t solve the decades of neglect in our infrastructure.”  The mayor’s spokesperson, Robert Warfield, went on to say that the outages were “caused by extreme heat, cable failure, and routine maintenance – all combining causing system overload.”  Apparently, a cable feeding a critical substation failed, and the municipal utility tried to reroute the system, triggering a circuit breaker, which caused the blackout.

Spirit of Cooperation

During 2014, I wrote a number of blogs on various utility transmission and distribution issues that arise and the investment required to keep the lights on.  These issues are also discussed in detail in Navigant Research reports, including High-Voltage Transmission Systems, Flexible AC Transmission Systems, Synchrophasors and Wide Area Situational Awareness, and Smart Grid: 10 Trends to Watch in 2015.   Over the years, I have seen neighboring and even distant utilities step in to help utilities in another state or region restore power after a natural disaster, storm, or power failure.  DTE’s work to make sure the lights stay on in Detroit is another great example of the spirit of cooperation within the electric utility industry.

 

India’s Faulty Grid Presents A Transmission Opportunity

— January 12, 2015

Many of us here in the United States have little appreciation for the tremendous size and opportunity for electric transmission and distribution system technologies in the Asia Pacific region.  To use Geoffrey Moore’s analogies regarding how technology markets develop, there are the 500-pound gorillas, two or three followers, and a number of other wannabes.

Taking that metaphor to the regional market level, the Asia Pacific market has two significant gorilla countries, India and China, some followers like Japan, Australia, and Indonesia, and then the other wannabe countries.  Electric transmission technology vendors have an opportunity-rich environment across the region, but the sheer scale of the opportunities and the sophisticated plans in India and China present the biggest gorillas.  To illustrate this point, I’ll focus on India, where the national transmission planning process is most transparent.

The 1.2 Billion

India currently has a population of 1,264,360,000 people, representing 17.5% of the world’s population, or 386 people per km2, of which only an estimated 30% have electricity.  The country’s landmass is approximately 3,287,263.00 km2, which is about half the size of the United States.  India currently has over 220 gigawatts (GW) of generation capacity, a number that is expected to grow to 425 GW in 2022, with the addition of up to 66,000 kilometers of transmission lines and 90 new substations.  Most of the current electric transmission system in India is in the 135 kilovolt (kV) to 450 kV range, and it has significant reliability issues due to weather, introduction of intermittent renewables, and aging infrastructure.

The fascinating point here is that Power Grid India, the national transmission system operator, is now building out a high-voltage transmission superhighway that will serve as the backbone for India’s rapidly expanding transmission and distribution grid.  This plan is exceptional because of the use of extra-high-voltage 800 kV high-voltage direct current (HVDC) and 765 kV high-voltage alternating current (HVAC) systems – on a scale seen nowhere on the globe except in China.  The following graphic shows the overall configuration.

Planned HVTSs under Implementation, India

(Source: Power Grid Corp.  of India Ltd.)

The Way Forward

Adding to the tremendous scale, India is specifying and using the latest technologies, including state-of-the-art flexible AC transmission system (FACTS) devices such as static VAR compensators (SVCs) and static synchronous compensator (STATCOMs) that are still controversial in some regions in North America, such as PJM, as well as synchrophasor and wide area situational awareness (SWASA) technologies and solutions to better manage the transmission grid in real-time.  These technologies and markets are discussed in a series of Navigant Research reports from 2014, including Flexible AC Transmission Systems and High Voltage Transmission Systems.

India recently deployed over 1,300 phasor measurement units (PMUs), giving the country one of the largest current PMU deployments in the world, showing leadership in advancing these new and powerful technologies.

For the big three electric transmission technology companies, ABB, GE/Alstom, and Siemens, as well as the other technology companies like Schneider, S&C, Mitsubishi, Toshiba, and other new entrants, the rapid expansion of India’s transmission system represents a tremendous revenue opportunity.  For the population of India, it represents electrification on a large scale a much more reliable and resilient power grid – and a path to a much higher standard of living.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"James McCray","path":"\/author\/jmccray","date":"3\/2\/2015"}