Navigant Research Blog

In China, 3D Printing Produces a Village

— April 24, 2014

My earlier blog on 3D printing showed how the process will influence the building industry.  In this blog, I’ll report on significant news from China in this field and describe how 3D printing for the consumer market is quickly evolving, changing the prototyping and product development process.

Earlier this month, the Chinese company WinSun Decoration Design Engineering Co. printed 10 small houses in just 24 hours.  This is astonishing, especially given the simple approach and cheap cost of these homes.  While most 3D printing uses plastic polymers, the WinSun project used a slurry of construction waste, cement, and industrial waste deposited on a simple wireframe mesh to construct the walls.  According to an article in The Architect’s Newspaper, each structure cost less than $5,000 in materials.  These buildings are more like the prefab wooden frame construction that has gained traction of late than the 3D-printed buildings mentioned in my previous blog that are currently in production (in print?) in Amsterdam.

Regardless of how much manual labor was needed to build the Chinese village, there are two significant implications.  First, if these structures can be built at a low cost, with minimal assembly and local and sustainable materials, then the future of local housing in the developing world could change very quickly.  Post-disaster housing, long-needed manufacturing facilities, and basic buildings like schools or health clinics could simply be printed with durable materials – and very quickly.  Second, both the printed Chinese village and the 3D Print Canal House in Amsterdam could be designed and printed for optimal energy efficiency based on the characteristics of the locale – not just the state or federal building code.  While a market for these novel approaches has yet to coalesce, the investments in 3D printing from governments and startups around the world will help that market form.

Printing Made Easy

Creating prototypes is a long-used practice in manufacturing, engineering, and design.  The ability to touch and feel a physical 3D object can lend insight into its function and consumer response.  As 3D printers are dropping in price and size, the use of the technology for product prototyping has been growing.  Makerspaces are popping up in major cities around the United States, providing customers with the tools and equipment to print their computer-aided design (CAD) projects for a fee.  Some of these have been funded by local governments and some by local entrepreneurs.  Others are being funded by corporations looking to engage university students and local entrepreneurs.  Last week, General Electric (GE) launched its FirstBuild center, making 3D printing available to local University of Louisville, Kentucky students and faculty.  Students and local entrepreneurs will have access to top-of-the-line 3D printers and CAD software to design and prototype their appliance-related ideas.  This approach highlights the importance of easy prototyping, as well as GE’s commitment to innovation in design for the consumer and building markets.

Meanwhile, local 3D printing is becoming more accessible.  Taking the approach that it is just a different kind of printing, Staples has jumped into the 3D printing game.  While Staples already sells 3D printers and supplies, it recently launched its My Easy 3D service, where customers can upload CAD designs to create their own prototypes.  With the opening of these modern print shops, entrepreneurs and designers can quickly and inexpensively prototype their ideas.  It will be interesting to see how access to easy prototyping will change design and manufacturing, not just in the built environment, but also in our consumer-oriented economy.

 

Cleantech in the Era of Big Data

— April 1, 2014

The concept of big data – the notion that we are overwhelmed by a flood of digital information like nothing we’ve seen before – holds both promise and peril.  The allure is centered on the benefits that big data will bring, in areas from medicine to traffic to agriculture.  These benefits will translate into profits for companies that manage, transmit, and store all that data.

Then there’s the other side: that big data will lead to privacy intrusions, lack of freedom, and, from a very practical standpoint, yet another headache for executives and IT managers.  We have covered this topic in the past (see a great description of how automated demand response firms are focusing on data analytics or click here to read more about framing the problem for building operators) and our recent webinar, Innovations in Smart Building Data Analytics, also presented some excellent examples of how industry leaders are using data analytics for their customers.

The Three Vs

Many definitions of big data are available, but the most compelling framework was created by Doug Laney in a 2001 research report.  This description focuses on three prime elements: volume, velocity, and variety.  Volume refers to the bigness of the data – there are more sensors and signals than ever before, pumping out data on everything from location to temperature to transactions.  Velocity addresses the speed that the data is being created, from subsecond phasor measurement unit (PMU) data describing the power quality on the grid to the rate at which Facebook is gathering our likes.  (It should be noted that one overlooked aspect of velocity is not just speed, but also direction.  Data is streaming not just from our devices, but also to servers, corporate analytics processors, and back to customers, all over the world.)  Lastly, there is variety, which is the real game-changer.  Data has never been unitary, and the diversity of data forms, standards, protocols, and utilities is growing by the day.  While often presented as separate concepts, these three elements are intrinsically linked.  I’d like to present the three Vs as a nested hierarchy (see below).

The 3 Elements of Big Data

 

(Source: Navigant Research)

Data volume gets most of the attention (hence the name big data, not fast data or diverse data) and velocity gets the communication and IT folks excited.  But it’s the variety of the data, and the variety of the velocity and the variety of the volume, that makes the big data interesting.  It’s not just that data is big or fast; it’s the diversity of speeds and directions that data travels to its many users.

Big Data, Big Challenges

For example, utilities used to report monthly electricity usage; now customers can see how much power they use every 15 minutes – that’s three orders of magnitude difference!  In addition, utility data is now being served to customers, local grid operators, energy efficiency firms, and facility managers.  Lastly, it is the complexity of the variety (the variety of the variety) that creates challenges, as well.  For example, in the developing world, buildings are at many different levels of IT sophistication and electrical grids have to integrate old equipment and management processes along with new state-of-the-art high-tech factories that need highly reliable power.

So how is big data actually affecting cleantech markets and technologies?  Going forward, in our research and our blogs, we will touch on how big data is changing cities and how it’s being integrated into regular business practices.  We will explore how traditional firms are coming up to speed, while startups are using it to leapfrog their competition.  We’ll  also examine how big data is providing new opportunities and challenges to the cleantech markets and how those markets are responding.

 

The Future of Buildings Will Be Printed in 3D

— March 11, 2014

There is something mesmerizing about watching a 3D printer work.  Whether it’s printing in plasticsandmetalsugar, or chocolate, it is captivating to see layer after layer be laid down to create simple or sublime forms.  3D-printed (also known as additive) materials have been recognized as having novel material, physical, and even electric properties.  Impossible shapes have been created that could enable an expansion in how materials can be conceived and used.  But what does additive manufacturing mean for buildings?  The ultimate application is easy to conceive: printing buildings, molecule by molecule, creating homes with landing pads for flying cars, and a HAL-9000 built into the walls.  But that is the Future (with a capital F).  In the near future, 3D printing will change the ways buildings are maintained and built.

The first application of 3D printing will address a very old-school problem: replacing parts in aging equipment.  Buildings are incredible for their durability.  This is also true for the equipment inside buildings.  At the Hotel Boulderado in Boulder, Colorado, the city where Navigant Research is headquartered, the original elevator is still running after 100 years.  With good maintenance, some systems will last for decades beyond their intended service life.  Keeping legacy systems in place lowers capital expenses for building owners.  But it’s not always easy to replace old parts.  In some cases, the replacement parts are no longer available, either because the manufacturer has gone out of business or has simply stopped making them.  In other cases, the transport costs for replacing parts can be prohibitive.  3D printing can solve that by creating custom parts made with extreme precision.  With the portability of 3D printing, it could even be possible to send the design specs for the part to the location where they are needed and print the part onsite.

Print Me a House

Constructing buildings using 3D-printed materials is still in the visionary phase of development.  DUS Architects has launched an ambitious project to print a traditional Dutch Canal House out of polypropylene.  In a very public display, a large silver box will print walls and other structures onsite, to be assembled into the traditional canal house form over the next few years.  Starting with the façade, the buildings will be printed and assembled out of plastic, building voids into the walls for support and insulation.  This is a public demonstration of an innovative approach.  One can envision printing building materials onsite using local materials, curbing transportation costs, saving energy, and reducing carbon emissions, not to mention vastly lowering the material waste that is a part of the building manufacturing industry.  In the next few decades, we can look forward to 3D printers getting bigger and cheaper, enabling 3D-printed material to be merged with traditional approaches.  The economics of 3D printing materials for buildings are not clear, and could be a major limiting factor in most settings.  In the meantime, if you find yourself in Amsterdam, you can buy a ticket to see a house being printed.  The architects and partners have made the building site (and print shop) open to the public for a small fee.

 

Battle of the Buildings Addresses Split Energy Incentives

— February 18, 2014

Among the hottest topics in city-scale energy is the use of building energy benchmarking and disclosure data.  As explained in this blog by my colleague, Eric Bloom, benchmarking is the process of comparing a building’s energy use to others in its sector or class.  Disclosure refers to the reporting of energy data when a building is sold or refinanced.  Many of these practices fall under smart cities programs.  The cities, states, and, in the case of Australia, the country employing these metrics aim to make visible the energy being used by commercial buildings in order to provide carrots and sticks to encourage building owners and operators to reduce energy demand.  The adoption of these programs is now global (see buildingrating.org for the breadth of these programs).  This movement could enable a process of market transformation where energy efficiency and sustainability become the norm, not the exception.  The Institute of Market Transformation has been a leader in promoting and tracking these programs, identifying the additional benefits to cities, including jobs and greenhouse gas reductions.

(Source: Buildingrating.org)

In the United States, many of the city-based benchmarking programs efforts are leveraging the ENERGY STAR Portfolio Manager program, administered by the U.S. Environmental Protection Agency.  Using ENERGY STAR has helped cities with the heavy lifting of capturing and standardizing building energy data.  Using ENERGY STAR has also helped open the conversation around improved building energy performance.  The ENERGY STAR site spotlights individual buildings that are making significant steps toward improved efficiency.  We may not see the realized savings of benchmarking programs for a few years, given the challenges of measuring and attributing energy savings.  But a series of case studies reported by the Institute for Market Transformation shows that an average of 7% energy savings have been demonstrated in cities across the country.

ENERGY STAR is also running its fourth annual Battle of the Buildings competition, pitting buildings against each other to achieve the greatest percentage-based reduction in energy use intensity over the course of the year.  This year’s competition (drawing on 2013 data) includes commercial tenants.  This is a novel change, addressing the classic split incentive issue.  The split incentive refers to the nature of the tenant-owner relationship; in most cases, the building owner pays for the capital upgrades to a building, while the tenant reaps the benefit in smaller electric bills.  A different, but similarly challenging, situation arises when tenants’ leases are not tied to energy use in any way, potentially negating the building’s energy efficiency improvements through naive behavior changes, like leaving the lights on over the weekend, or installing a server near a thermostat.  One approach is a green lease, under which the tenant and owner are aligned on energy savings goals, with financial incentives built in.  Of course, the tenant can pursue energy savings individually and try to win the ENERGY STAR tenant competition.  The results of the competition will be released in April.  Stay tuned for an assessment of the results.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Digital Utility Strategies, Electric Vehicles, Energy Technologies, Finance & Investing, Policy & Regulation, Renewable Energy, Smart Energy Program, Transportation Efficiencies, Utility Transformations

By Author


{"userID":"","pageName":"Noah Goldstein","path":"\/author\/ngoldstein?page=8","date":"5\/27\/2018"}