Navigant Research Blog

Postcard from Puerto Rico

— November 1, 2017

It has been more than a month since Hurricane Maria swept through Puerto Rico. The majority of this US territory remains without reliable electricity and is facing a crisis of unprecedented proportions. The lack of power in Puerto Rico, as well as the hurricanes that struck Florida and Texas, have turned up the heat on utilities, regulators, and the federal government regarding how best to rebuild power grids for greater resilience to protect against future outages during natural disasters.

While companies such as Tesla proclaim that Puerto Rico provides the perfect opportunity to deploy solar PV plus energy storage microgrids to rebuild regional power supplies, others argue the quickest way for restoration lies with fixing the traditional hub-and-spoke centralized transmission grid. Where does the truth stand? As is often the case, somewhere between these two extremes. Though I personally would invest more heavily into microgrids, I would not restrict them to solar energy because hurricanes can both damage and limit power production. Nonetheless, wind-powered mobile microgrids were part of the immediate response, smart dual-fuel generators should also be vital parts of the microgrid solution mix.

Can Lessons from the Military Rebuild Puerto Rico?

There are some important lessons that Puerto Rico can benefit from if it listens to the US military, a key responder to the crisis in Puerto Rico.

As I noted in a recent blog, the US Department of Defense (DOD) and data centers have been wrestling with how to maintain uptime while scaling back its reliance upon diesel generation. In a new Navigant Research white paper sponsored by Schneider Electric, I argue that innovative business models, such as microgrids as a service, may be the ticket to transforming industries reluctant to embrace distributed energy resources (DER) innovations. Likewise, military bases are following similar pathways forward, eliminating capital costs and financing upgrades through energy efficiency savings. Case in point is the Marine Corps Logistics Base in Albany, Georgia, which is the DOD’s first net zero energy military base.

The military microgrid market was viewed as an early adopter before budget issues helped stall the market. While a uniquely US market in terms of adoption for stationary bases, its effect is global since the DOD has sites scattered across the globe. Forward operating bases and mobile tactical microgrids can operate as standalone systems or interconnect with traditional grids and have been featured in recent conflicts in both Afghanistan and Iraq. A new report from Navigant Research notes that momentum for DOD microgrids is picking up.

Military Technology – Civilian Implications

The DOD has played a remarkably consistent role in commercializing new technologies that provide tremendous social benefits within the larger civilian realm. The Internet, created by the Defense Advanced Research Projects Agency (DARPA) in 1969, is perhaps the most ubiquitous of the DOD’s contributions to consumer markets. Along with accelerating the commercialization of traditional manufactured products such as aircraft, the DOD has also pushed the envelope on IT. These advances have been vital to all smart grid platforms, including microgrids.

Hurricanes and related rain and wind do pose challenges to all forms of power supply, including microgrids. Yet, developing a distributed and diverse portfolio of resources is always the best bet, whether one is talking about the wholesale or retail delivery system (note that Cuba’s reliance on microgrids limits outages compared to its Caribbean neighbors). While the Trump administration favors traditional energy pathways, the DOD has forged new ground in DER. One option for Puerto Rico could be to carve out a lead role for the DOD in rebuilding its power system, showcasing lessons learned from both domestic bases and remote power bolstering national security, while at the same time delivering the humanitarian services so direly needed by the local population.


Data Centers and Military Microgrids: The Diesel Dilemma

— October 20, 2017

If something isn’t broken, why try to fix it? This kind of thinking sums up the perspective of many owners and operators of data centers. If they feel comfortable with the technology or solution that has been in place for quite some time, the incentive to enact something new and different is small. As a result, to maintain power for mission-critical loads, data centers have historically relied upon diesel generators linked to lead-acid batteries and (perhaps) dual feeds from two different utilities.

The Uptime Institute has created de facto data center industry standards that range from Tier I to Tier IV, with the latter representing the highest possible resilience. “Human beings have an almost emotional attachment to their diesel generators, as they give data center owners and operators both comfort and a form of insurance,” observed Chris Brown, CTO for the Uptime Institute. He does not see a decline in reliance upon diesel generators. According to Brown, “Engine generator usage will likely hang on, as the emotional tie and the form of insurance will still be present.”

Despite these insights, new data highlights how existing power infrastructure does carry risks for data centers. The average power outage cost for a data center in 2015 was $740,357—a 38% increase in the cost of downtime compared to 2010. Perhaps the most disturbing statistic found in Eaton’s Blackout Tracker Annual Report for 2016 is that the increase in maximum downtime costs rose to $2.4 million.

Military Base Parallels

One analogy to the challenge facing data centers is military bases in the United States. A typical large-scale military base may feature from 100 to 350 backup diesel generators, each hardwired to a single building. In many instances, they are sized at more than 200% of each building’s peak load as a contingency for energy security. Just a simple networking of existing diesel generators into a microgrid can offer cost savings for military microgrids and data centers alike.

A study by Pew Charitable Trusts found, for example, that creating a microgrid instead of relying upon standalone backup diesel generators reduces the cost of resilience by $1 billion or more. Note that the savings vary by region, with the greatest savings for those military microgrids deployed in the PJM Interconnection transmission control area. Yet, when displacing diesel backup generators with 50% diesel/natural gas fuel hybrid microgrid, California military bases boast the largest net savings. With a 50/50 portfolio of diesel/natural gas, microgrids in the PJM territory and the Southeast ironically show an increase in cost on a dollar-per-kilowatt basis if compared to the current reliance upon diesel backup generators. This is largely a result of low diesel fuel prices in those parts of the country, and it arguably points to the need to diversify power generation sources with a microgrid beyond fossil fuels.

Annual Net Cost of Protection ($/kW of Critical Load)

(Sources: Noblis, The Pew Charitable Trusts)

A new report by Navigant Research, Military Microgrids, notes that a key to innovation lies in new business models. The same could also be said for data centers. Data centers like to control their own destiny, which often means they want to own infrastructure. Yet, just like solar leases and third-party power purchase agreements accelerated the solar PV industry at a critical point in time in its development path, similar models could also bring microgrids into the mainstream.

Does such an approach hold promise for state-of-the-art data center microgrids? Schneider Electric would like to find out. Learn more at the upcoming webinar on October 24.


Making the Case for Short-Term Solar Forecasting in Plug-and-Play Remote Microgrids

— August 25, 2017

The microgrid market is tilting toward solar PV generation as a preferred resource. This is especially the case within the context of remote microgrids due to the economic advantages these systems present from an ongoing operations and maintenance perspective. A concentrated effort to move closer to plug-and-play microgrids is also underway, with a variety of vendors touting this approach.

One can make the case that displacing high cost diesel fuel with fuel-free solar is a valid value proposition on paper. However, a variety of ancillary technologies can also be integrated into a remote microgrid setup to transfer this concept into economic savings in the field. Such integration could displace as much diesel as possible while also limiting wear and tear on fossil fuel generators and batteries. Yet, the hype surrounding the dynamic duo of solar plus storage is obscuring the fact that different tools can help build a market for microgrids, including short-term solar forecasting.

A Game Changer in Australia

The Commonwealth Scientific and Industrial Research Organization (CSIRO) of Australia has helped develop a plug-and-play microgrid offering that marries low cost short-term solar forecasting with load optimization and diesel scheduling innovations. The game changer is the ability to integrate low cost short-term solar forecasting into remote microgrids featuring ever increasing solar PV penetration over time, with early tests showing a 97% reduction in high ramp rate events and fuel savings of almost 8%.

Solar forecasting falls into two categories: long term and short term. Long-term forecasts look out over a period of time (such as a week) to optimize resource scheduling. This forecast is more relevant to grid-connected solar PV resources. Since these forecasts look out over a longer-term time horizon, error rates tend to be lower because the forecasts are far less granular than short-term solar forecasts.

Remote microgrids cannot sell any services back to a grid operator; thus, the prime focus for remote microgrids featuring high penetrations of solar PV is short-term solar forecasts. Fluctuations at this scale can lead to blackouts or inefficient use of scarce and expensive diesel fuel.

According to the analysis Navigant Research performed for CSIRO, it appears the key to commercial success of short-term solar forecasting is minimizing capital cost and error rates. One could argue that short-term solar forecasting should be the first response to managing the variability of solar energy, since it is far less costly than major hardware investments like advanced batteries.

Short-Term Forecasting Adds Value

The short-term solar forecasting technology embedded in the plug-and-play microgrid solution from CSIRO is well-suited to Australia. It also offers other forms of value. For one, it can be used in the planning process to shape the initial design. First Solar claims it can get within 1% accuracy of annual energy estimates from available solar resources, but the company has difficulty sizing batteries properly since short-term solar power production is too variable. The technology being developed by CSIRO can address this gap, developing better estimates of required capital costs during the design phase for better battery sizing.

Finally, short-term solar forecasting technology can also be an important tool utilized outside of a remote microgrid application such as in the case of virtual power plants (VPPs). Australia is emerging as a hotspot for VPPs, too. In fact, CSIRO is sponsoring a free event focused on VPPs on December 1. Australia just may be the center of digital grid innovations.


Exploring Potential for Integrating Transactive Energy into Virtual Power Plants

— August 4, 2017

The concepts of virtual power plants (VPPs) and transactive energy (TE) are similar in that they place prosumers—formerly passive consumers that now also produce energy—front and center in an emerging market for grid services delivered by distributed energy resources (DER). Both trends are indicative of an electric grid ecosystem that is decarbonizing, decentralizing, and digitizing.

Navigant Research believes that the future of energy rests on the foundation of cleaner, distributed, and intelligent networks of power, what we call the Energy Cloud. The VPP model presents a compelling vision of this future, as does TE. When combined, new revenue streams for diverse energy market stakeholders are inevitable. What portion of the VPP/TE plethora of possibilities will find its way into prosumer pockets?

In a new Navigant Research report entitled VPP Transactive Revenue Streams, I identify six grid services that could be enhanced by integrating TE within the VPP framework. Much more work needs to be done to put money into stakeholder pockets, so I’ve also briefly identified the regulatory challenges that need to be addressed to make these revenue streams real:

  • Localized clean energy: How can previous policy vehicles such as net metering and feed-in tariffs be accommodated or revised (or eliminated altogether) to shift from subsidy schemes to a more transparent market locally, regionally, nationally, and internationally? TE platforms operating within VPPs may be a good starting point.
  • Virtual capacity: Just as consumer supports need to be revisited for solar PV and other distributed generation, so do assumptions governing determinations of resource adequacy for wholesale system planning. Perhaps exit fees and demand charges are obsolete in a DER-rich future. What are new ways to monetize the actual non-generation-related services a power grid provides?
  • Real-time demand response: More sophisticated load-based demand response will be part of the toolkit to displace ramping fossil fuel generators up and down in response to variations in solar and wind. Harvesting load will be one of the key innovations to benefit from TE-based blockchain ledger systems.
  • Fast frequency regulation: While the VPP seeks to provide creative fast frequency response, the sources of such services are still often spread far apart. In an ideal world, localized generation, energy storage, and load could be marshaled to address frequency challenges to the grid. How can we integrate locational benefits in the pricing of such grid services?
  • Smart voltage control: The proliferation of smart inverters onto the grid represent a rich resource portfolio that can be monetized in multiple ways. TE trades would enable a similar value proposition as fast frequency response. The same challenges to pricing locational benefits apply.
  • Big data from small sources: A VPP supported by TE must rely on accurate and timely data, analytics, and insights. While prosumers may not reap large profits from the data they provide via TE, energy service providers and distribution system operators may view this as the largest revenue stream flowing from the digital grid utility transformation.

Do VPPs create opportunities for TE revenue streams or vice versa? Most likely, these two DER platforms will evolve in parallel. DER management systems that can harmonize VPP and TE platforms must incorporate market pricing mechanisms to reflect the changing value of millions of connected endpoints throughout the day. That’s quite the challenge, which also translates into a major revenue stream opportunity for the Energy Cloud ecosystem.

To learn more from two major players active in the Energy Cloud ecosystem—Enbala Power Networks and ABB—tune into the Navigant Research-hosted webinar on Tuesday, August 15 at 2 p.m. EST.


Blog Articles

Most Recent

By Date


Clean Transportation, Digital Utility Strategies, Electric Vehicles, Energy Technologies, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Transportation Efficiencies, Utility Transformations

By Author

{"userID":"","pageName":"Peter Asmus","path":"\/author\/peter-asmuspikeresearch-com","date":"11\/24\/2017"}