Navigant Research Blog

Sunrun: The Large Solar Provider Dilemma

— September 19, 2017

On August 24, Sunrun—the last of the large independent US solar providers—announced an agreement with Comcast, a leading cable provider in the country. The two companies plan to launch a strategic partnership to offer Sunrun’s services to Comcast’s clients.

Sunrun was founded in 2007 and found success innovating new ways to finance residential solar installations such as solar leases and power purchase agreements (PPAs). It created the solar as a service (SOaaS) business model, which became the foundation for the growth of the sector between 2010 and 2015. Until 2014, it seemed that solar leases and PPAs—grouped as third-party ownership in California’s Interconnection Applications Data Set—were going to be the winning business model in the SOaaS industry. These leases allowed large players to both increase the market size and displace local installers.

Changing Solar Market

In 2015, the market share of solar leases and PPAs in California—which itself represents around 60% of the US market—plunged to under 50% from 75% in 2013. Data for 1H 2017 shows third-party ownership at close to 30%.

Third-Party Ownership Market Share, California: 2005-1H 2017

(Sources: Navigant Research; California Distributed Generation Statistics)

The collapse of third-party ownership has weakened large solar providers compared to local installers. Large solar providers relied on their access to cheaper capital backed by significant margins in their leases to run large business development teams and finance the installations. As residential solar customers moved into cash or loan buys, local installers became competitive again, reducing the profit margin per installation in the industry. This left large solar providers like Sunrun with high customer acquisition costs relative to profit per installation.

Under these circumstances, it is not surprising that Sunrun is looking for new and cheaper ways to attract customers. Even if this partnership with Comcast costs Sunrun its independent status, it may be worthwhile if the strategy is successful.

What Is in It for Comcast?

Comcast has shown interest in the energy sector in the past, and its Xfinity Home service includes a smart thermostat as one of the offerings. However, scaling it into a full-fledged energy solution would be costly, as Comcast would need to build a new team from the ground.

For Comcast, this partnership offers a relatively cheap entry into the solar and energy markets in which it can rely on its core skills (customer acquisition and management) without having to invest significantly in a new product. If successful, Comcast can push a more aggressive strategy into the energy sector either through Sunrun or with its own product.

Benefits and Potential

Customers of Comcast and Sunrun could also benefit from this partnership. The companies can put together a convincing solution for home automation by tapping on their offerings on the two main services around home automation—security and energy.

The success of this partnership will depend of Comcast’s ability to cross-sell energy services to its current customer base. Comcast operates in a market with limited competition and high barriers to entry, which is different from the solar market. The sales process of solar is also different from that of cable. Solar is a long-term investment (even leases and PPAs require long-term contracts). Therefore, customers take long before making a final decision and, in some cases, it will require home visits before the deal is closed. This means that Comcast cannot simply add solar to its bundles. It will have to invest in training its sales force if it wants to sell solar services effectively. It won’t be easy, but if Comcast succeeds, it may signal a new era for energy.


Can Solar Make an Impact on the Transportation Market? Part 2

— September 5, 2017

After a few conversations with Scott Shepard about PV systems in EVs, I began to come around to his view that solar is too expensive and the roof space too limited to make a solar-equipped EV work at the mass market scale. But then I read about another PV in transport project that made economic sense: Indian Railways’ newly launched solar diesel multiple unit (DEMU) trains. A total of 16 300W solar modules are installed on each coach on the train for ₹9 lakh ($13,950 or $2.9/W). The Indian Institute of Science estimates that the annual energy yield in a solar rail coach will be between 6,820 kWh and 7,452 kWh. This could displace 1,862 liters of diesel, saving around $1,650 per year at $0.88/liter diesel.

Lessons Learned

I see two key elements that make the project work. The first lesson from India is that solar in transport makes more sense when it is displacing liquid fuels rather than electrons. Going back to the Prius example from the first blog in this series, if the solar roof was available in Toyota’s non-plug-in version of the car, its economic effect would be significantly better. If a non-plug-in version of the Prius could run for 2,190 km per year on only solar, it could save about 150 liters per year, which would have a value of around $180 per year (using Japan’s gasoline price in July 2017). The investment in a solar roof could break even within the lifetime of the car, so the current cost of the add-on could be justified.

The second lesson is the use of off-the-shelf modules. In this way, the project benefits from the economies of scale that PV systems are famous for. It would be difficult to use off-the-shelf modules in cars, but if Toyota introduced the solar roof in all its Prius cars (for example), it could increase the production rate of solar roofs for the Prius from a couple of thousand per year to about 350,000 per year (global Prius sales in 2016). Modules with similar high efficiency cells in the wholesale market sell for about $0.50/W (i.e., $90 for the 180W used in the Prius).

Most of the costs arise from integrating the PV cells into the roof of the car. These costs could decline significantly due to economies of scale as well. If Toyota could cut costs to those of the train company ($540 for 180W already installed in the car, including inverters and other costs), the breakeven period would be about 2.5 years. Slashing costs would make a solar roof a no-brainer (especially for consumers like me who would be able to drive the car without ever using a charging point or stopping at a gas station).

Interesting Niche

This would open an interesting niche for solar companies. If all the EV and hybrid EV cars sold globally in 2017 (expected to be between 3 million and 4 million) had a 180W roof, an additional 840 MW (an extra 1%) could be added to global solar PV demand. But solar roofs need a champion to push them into the mass market in the same way Tesla pushed EVs away from the margins. My last blog discussed two startups that are exploring this niche. However, traditional manufacturers could do the same to differentiate their brand and cars from the competition. Toyota is an obvious choice given its brand association with hybrid cars, but other manufacturers could step in. For example, Volvo could be a great candidate since it is hybridizing all its models.


Can Solar Make an Impact on the Transportation Market? Part 1

— August 31, 2017

People have dreamed of solar-powered vehicles for decades. The first World Solar Challenge race occurred in 1987 and the first American Solar Challenge (then called Sunrayce) was held in 1990.

Thanks to improvements in solar costs and the EV value chain, the dream is closer to reality. Two startups (Sono Motors in Munich, Germany and Lightyear in Eindhoven, the Netherlands) have projects underway. Sono Motors successfully crowdfunded more than half a million dollars in September 2016 and revealed its first car on July 27, 2017: the Sion. According to Sono, the Sion will cost between $13,200 and $17,600 depending on the battery size and will run without refueling for around 30 km with a 1 kW solar system. It will be available in 2019.

Lightyear is an unofficial spinoff from Solar Team Eindhoven. This team built the Stella and Stella Lux solar racers—both winners of the Bridgestone World Solar Challenge Cruiser Class. The cruiser class replicates traditional cars, with seating space for four people. Lightyear has been taking preorders since June 29, 2017 for €119,000 ($138,000). The car is expected to offer a range between 400 km and 800 km and travel between 10,000 km and 20,000 km per year in low irradiation areas (e.g., United Kingdom and the Netherlands)—charging only with its PV system.

Today’s Solar-Powered Vehicle Option

A solar-powered vehicle option is available on the market today. Toyota’s latest Prius Prime Plug-in Hybrid offers an option in Japan to add a 180W solar roof that charges the main battery. Toyota claims that the roof will give the car a maximum solar rage of 6 km in Japan, which is a country with medium irradiance levels. The option to add the solar roof costs $2,500, which adds 5%-10% to the vehicle price. This seems expensive given the savings it provides compared to buying electricity from the grid that costs below $70 per year, even with the high electricity prices in Japan. From a convenience point of view, the system might make more sense for people without parking at home and short daily drives. My daily commute is around 4 km, which means that if I had the Prius Prime Plug-in Hybrid with the 180W solar roof add-on, I could drive mostly electric all year without visiting a charging point. It is still an expensive feature, however, which is why most mobility analysts—like my colleague Scott Shepard, who analyzes the EV market—have been skeptical about the idea of putting solar and EVs together. Yet, other automakers are exploring the PV-EV connection, as well. Audi has just announced it will unveil a prototype EV with solar panels on the roof to extend the vehicle range.

Despite the skepticism, one successful solar-powered vehicle project exists. Part 2 of this blog series will look into Indian Railways’ newly launched solar diesel multiple unit trains.


Consumer Choice in the UK Energy Market: The Year of the Tracker Tariff

— July 11, 2017

A year ago, I wrote a two-part blog post (part one and part two) about the surge in consumer choices in the United Kingdom’s energy market. A lot has happened since those articles were written—the second of which was published on the same day as the Brexit referendum results.

Energy price hikes made headlines over the 2016/2017 winter, as five of the Big Six energy suppliers (EDF, E.ON, SSE, British Gas, Scottish Power, and Npower) raised prices by 8%-15%. British Gas was the only exception, promising to hold prices until at least August 2017. These increases put a political spotlight on energy prices during the country’s general election in June—during which even the Conservative Party (generally associated with free market policies) proposed energy price caps.

The Year of the Tracker Tariff

Although the political debate has not devolved into any specific energy policies yet, small energy suppliers and new entrants (such as Octopus Energy, Pure Planet, and ENGIE) have used the price hikes as an opportunity to launch a new class of energy tariff: the tracker.

Prior to May 2017 (when the first tracker was launched), consumers in the United Kingdom could opt for either a standard variable rate (SVR) or a fixed price rate:

  • SVR: In a SVR tariff, the unit price of electricity can go up or down at any time. The supplier must notify the consumer of price rises (and of any other changes to the consumer’s disadvantage) but the price charged is completely at the supplier’s discretion. This is the most basic offering from energy suppliers and it is usually their most expensive. Consumers usually end up on this tariff after a fixed contract expires.
  • Fixed price rate: In a fixed price tariff, the unit price of electricity is agreed upon at the beginning of the contract and remains fixed for a certain period (often 12 months in the United Kingdom). This fixed price is usually below the SVR.

Energy suppliers have been criticized by Ofgem (the United Kingdom energy regulator) for widening the difference between their best rates and their SVRs. So, in a bid to win consumer’s trust through improved transparency, a few energy suppliers have launched tracker tariffs.

Retail Price Comparison by Company and Tariff Type: Domestic (Great Britain)

(Source: Ofgem)

Tracker tariffs resemble SVR tariffs in that the price the consumer pays for electricity changes with time; unlike SVRs, the price is not discretionary. Instead, it is linked to the average wholesale electricity price on the day of consumption.

The precise structure of the tracker varies from supplier to supplier. For example, Octopus Energy charges a fixed standing charge per day and then the wholesale price plus transmission and distribution costs, other regulated costs, taxes, and a fixed margin per kilowatt-hour consumed. Another supplier, Pure Planet, charges a fixed membership fee that includes all non-energy related costs and then wholesale prices for each kilowatt-hour consumed (100% renewable, in this case). ENGIE, the last of the companies offering tracker rates, has not yet disclosed how its tariff will be structured.

It is too early to judge whether consumers will embrace trackers or if they will prefer the certainty of fixed price rates. Perhaps the majority of consumers simply do not care enough about energy contracts and will continue to pay SVRs. Regardless, trackers are a step toward a residential energy as a service product. This is especially true of Pure Planet’s offering: by incorporating its margin into the fixed component of the bill, it is in a position to offer add-on services that increase comfort—or reduce energy consumption—without sacrificing profit margin.


Blog Articles

Most Recent

By Date


Clean Transportation, Digital Utility Strategies, Electric Vehicles, Energy Technologies, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Transportation Efficiencies, Utility Transformations

By Author

{"userID":"","pageName":"Roberto Rodriguez Labastida","path":"\/author\/rlabastida","date":"10\/17\/2017"}