Navigant Research Blog

With Predictive Navigation, Smart Cars Find Their Own Way

— December 15, 2014

The flood of available data from many sources – traffic updates, GPS, onboard sensors, etc. – will change the ways in which we’ll get around in the coming years.  One tangible manifestation, happening now, is predictive navigation.

From Google to Bosch to Volkswagen, a range of companies in the automotive and technology industries are starting to harness the power data to provide personalized real-time guidance and enhanced vehicle control that could lead to reduced congestion and fuel consumption – and, eventually, to hybrid powertrains that automatically adjust the balance between battery and engine output based on upcoming terrain.

Go This Way

Data about where and when we travel and how fast we go is collected through a combination of built-in systems, such as General Motors’ OnStar and Hyundai’s BlueLink, and brought-in systems, specifically smartphone apps.  Every time a driver launches a navigation app, such as Waze, Google Maps, or TomTom, information about speed and location is transmitted back to the cloud and aggregated with other factors, such as weather forecasts, construction sites, and local events, to determine where backups are occurring or are likely to occur and to provide real-time feedback.   The macro data can be combined with local data about individual driver habits to automatically provide alerts about traffic backups and alternate routes before you turn the key.

Google has provided these predictive alerts for more than 2 years as part of the Google Now functionality on Android phones.  At a recent innovation workshop at its Wolfsburg, Germany headquarters, Volkswagen showed off its own in-car solution to provide alternative route suggestions even when drivers don’t need to use the navigation for common destinations.  Other automakers, including General Motors, have been testing solutions for plug-in electric vehicles, like the Chevrolet Volt, that will automatically preserve electric power for the last portion of a drive home through a residential area or even use up some of the low-charge buffer when the system predicts it will be plugged in soon.

Shortest Is Not Necessarily Most Efficient

Mercedes-Benz is now utilizing topographic map data as an input to the plug-in hybrid powertrain available in its S500 luxury sedan.  When the system detects that the vehicle is approaching the crest of hill, it will automatically shift the power distribution away from the internal combustion engine to the electric motor and then recover energy to the battery on the downhill side.   Ford has been researching eco-routing solutions for both plug-in and traditional vehicles that will calculate routes that use less total energy even though they may cover more total distance.

Everyone that drives in urban areas is well aware of the frustrations of sitting through several cycles of a traffic light while trying to make a left turn.  For the past decade, package delivery company UPS has been using big data and electronic maps to provide its drivers with customized daily routes specifically designed to keep left-turns to a minimum.   By using right turns whenever possible, even if it means going further, UPS had saved more than 10 million gallons of gasoline and reduced carbon emissions by 100,000 metric tons by 2012.

 

Electric Turbochargers: The Next Big Thing in Fuel Efficiency

— October 23, 2014

The key to the next major advance in internal combustion engine fuel efficiency could well be the electric turbocharger.  At a recent fuel economy technology showcase at the U.S. Environmental Protection Agency (EPA) National Vehicle Emissions and Fuel Lab in Ann Arbor, Michigan, Valeo showed off the motor-driven turbo it will supply to an unannounced automaker.  The first production applications are scheduled to begin arriving in 2016, according to the company.

The aggressive expansion of fuel efficient technologies, such as electrification, multi-speed automatic transmissions, and engine downsizing, has played a major part in increasing miles per gallon.  The average fuel economy of the American new light duty vehicle fleet has improved by almost 25% over the past decade.  Meanwhile, gasoline direct injection and turbocharging have enabled engineers to cut engine displacement by 30% or more without sacrificing the performance that drivers have come to expect.  As of the 2014 model year, approximately 75% of Ford gasoline and diesel engines globally are turbocharged while 85% of Volkswagen engines are boosted.

Response Time

Part of the concept behind boosted engines is to use smaller engines with turbochargers that provide performance on-demand.  There has always been an inherent time lag, however, between the time the driver presses the accelerator and the generation of enough extra exhaust gas to spin up the turbo and provide boost.  Mechanically-driven superchargers eliminate much of the lag at the cost of substantial friction at higher speeds.

Replacing the exhaust-driven turbine side of the turbocharger with an electric motor provides a number of advantages, most notably in packaging, responsiveness, and operational flexibility.  One of the fuel economy benefits Valeo highlights is the combination of an electric turbo with the cylinder deactivation – i.e., the ability to shut off multiple cylinders under light loads in order to improve fuel efficiency.

The fuel savings achieved by shutting off unneeded cylinders can be quickly lost when driving on roads that aren’t completely flat.  Even a mild grade can cause an engine to switch back to running on all cylinders in order to produce enough torque to maintain speed.  “With an electric turbo, the engine management system can request small amounts of boost on-demand to increase torque while climbing a grade while keeping as many as half of the cylinders inactive,” Ronald Wegener, application engineering manager with Valeo, told me.  “This can yield up to a 10% improvement in efficiency.”

Valeo has developed versions of the device for both 12V and 48V electrical systems so that the turbo can also be used as part of a mild hybrid system during off-throttle conditions.  Intake air flowing through the compressor drives the motor to generate electricity, charging the battery.  Audi is using this as one of the two forms of energy recovery on its Le Mans-winning R18 e-tron race car.  Many of the current crop of Formula One cars have also adopted this approach.  Earlier this year, Audi announced that the next-generation Q7 TDI, scheduled for model year 2016, would be its first production application of the technology.

Shrinking Engines

Electric turbochargers also provide packaging benefits to engine designers.  Traditional turbos require complex plumbing to route exhaust gases to the turbine side of the turbo and feed the boosted intake charge to the other side of the engine.  Disconnecting the turbo from the exhaust allows designers to place the turbo wherever it fits best for packaging and performance.

Executives and engineers agree that while electric vehicles will gain market share in the coming years, internal combustion engines will likely remain the dominant powertrain choice in the transportation space at least through the 2020s.  With engines continuing to shrink, it seems likely that electric turbochargers will account for a growing share of the boosted engine market in the next decade.

 

Truck Fuel Economy on the Rise

— October 20, 2014

The U.S. Environmental Protection Agency (EPA) has just published its 2014 fuel economy trends report, and though the news is generally positive, some potential storm clouds remain on the horizon for manufacturers.  While the overall average fleet fuel economy hit a record 24.1 mpg for the 2013 model year, the monthly update from the University of Michigan Transportation Research Institute (UMTRI) showed a 0.5 mpg drop in September 2014, equal to the 2012 to 2013 annual increase.

The long-term trend has definitely been upward.  Last year represented the eighth increase in the past 9 years for the American new vehicle fleet.  Automakers will have to maintain this momentum if they expect to hit the 2025 corporate average fuel economy target of 54.5 mpg.  Fortunately, attendees at a fuel economy technology showcase at the EPA emissions testing lab in Ann Arbor were all publicly confident that the targets were achievable.

As for the sudden drop in September, that can be explained by what are likely temporary market conditions that led to a significant uptick in full-size truck sales at General Motors (GM) and Chrysler.  As the 2014 model year drew to a close, combined sales of the Chevy Silverado and GMC Sierra jumped 46%, aided by incentives of up to $4,500.  Ram sales were also helped along by retail incentives of up to $3,000, as well as the popularity of the new Ram 1500 EcoDiesel.

From Steel to Aluminum

Sales of Ford’s F-series trucks were essentially flat, as the automaker began the transition to its all-new, aluminum-bodied 2015 F-150.  It appears that GM and Chrysler are hoping to grab some market share in the financially lucrative big truck segment in hopes that Ford would stumble in the complicated transition from steel to aluminum trucks.

At this point next year, even if truck sales continue to climb, we’re unlikely to see a similar drop-off in fuel economy, thanks to new technology in the segment.  The weight savings and new power plants for the Ford trucks are projected to deliver up to 20% better fuel efficiency than the steel-bodied versions.

Chrysler and GM also have to meet the new fuel economy standards.  Ram pickups are already available with ZF 8-speed transmissions, and GM is adding its first 8-speed automatic transmission to 2015 pickups with a 6.2-liter V8.  As GM ramps up production of the new 8L90 transmission, it will probably get paired with other engines as well.  GM and Ford also have a joint development program to produce 9- and 10-speed transmissions for trucks and other vehicles in the next few years.

Diesel Debuts

Chrysler is also building on the success of the 28 mpg Ram 1500 EcoDiesel by doubling production to 20% of its total production volume of trucks in 2015.  Ford is still awaiting final EPA certification on the 2015 F-150, but the 2.7-liter EcoBoost V6 is also expected to get a highway rating in the upper 20s.  GM’s new midsize Colorado and Canyon pickups are already rated at up to 27 mpg with a gasoline V6, and a diesel version is coming some time in 2015.  Ford is also offering a diesel engine option in the new Transit full-size vans that replace the E-series this year.  Ford will likely be closely following the sales trajectory for diesel engines in the Chrysler and GM trucks, as well as the next-generation Nissan Titan and Toyota Tundra, which will both be available with a Cummins-sourced 5.0-liter diesel V8.

With the huge sales volumes of pickup trucks in North America, lightweighting, advanced powertrains, and automatic stop-start, trucks will make a big contribution to reducing fossil fuel use in the next decade.

 

Autonomous Vehicles Will Work Best Within Limits

— October 1, 2014

About the only way your next car has much chance of driving itself is if you live in a gated community or on a college campus where it won’t have to deal with too many variables like other traffic.  Just as voice recognition systems work best with limited vocabularies, autonomous vehicles will probably be limited to such constrained environments for the foreseeable future.  That’s the conclusion from the recent ITS World Congress 2014 in Detroit.  Increasing levels of vehicle automation were a major topic of discussion during the annual conference on intelligent transportation systems.

Google has been pushing the idea that self-driving vehicles will hit the road within the next 5 years.  Google had no official presence at the conference, but a lot of companies that build cars, parts, and infrastructure systems were there, and no one that I spoke with was in agreement with Google’s timing projections.  The general consensus is that we won’t see widespread use of full operating range autonomous vehicles until closer to 2030.

Not Street-Ready

That’s not to say that no one believes in automated driving; quite the opposite.  It’s just that in engineering circles, there’s a rule of thumb known as the 90/10 rule.  That is, 90% of the technical challenge of a project takes about 10% of the time and effort.  The last 10% takes the other 90% of the time.  In the realm of self-driving cars, we have just begun that last 10% phase, where the basic hardware elements are all worked out but a lot of software decisions have yet to be made in order for autonomous systems to be truly robust.

Much of the on-road development by Google and other companies has been occurring in places like California and Nevada, where environmental factors like snow and even rain are a rarity.  In order for autonomous vehicles to be both commercially and legally viable, they’ll have to work reliably under any weather and road conditions.

General Motors (GM), Volkswagen, and other automakers have been working on autonomous technology much longer than Google, and they understand these limitations.  When GM rolled out a two-seat self-driving pod car known as the Electric Networked-Vehicle, or EN-V, at the 2010 Shanghai World Expo, program leader Dr. Chris Borroni-Bird acknowledged that, while this type of vehicle would eventually be an ideal way to deal with the congestion problems of megacities like New York, Shanghai, and Mumbai, the first feasible real-world applications were likely to be in restricted environments, such as campuses and gated communities.

Say Again

As powerful as computers have become, they still don’t deal with the nuances of the real world very well.  That’s why voice recognition systems still struggle to understand what should be simple natural language commands on a smartphone.  The most successful applications of the technology have been for tasks like medical transcription, with limited and specific word vocabularies and little ambient noise.  Similarly, automated vehicles function best in constrained spaces, such as buses over fixed routes or the aforementioned commuter pods.

Google hasn’t actually made any major breakthroughs in the technology that we know of.  It just jumped into field relatively recently, hiring many of the engineers and scientists that worked on the autonomous vehicles fielded by automakers in the DARPA Grand Challenge and Urban Challenge competitions of 2006 and 2007, and leveraging the cost declines of the required sensors.

Where Google has outdone the incumbents is getting the technology media to talk about their efforts – but that’s unlikely to put full-function self-driving cars into consumers’ hands any sooner.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Sam Abuelsamid","path":"\/author\/samabuelsamid","date":"12\/21\/2014"}