Navigant Research Blog

In Ethanol, Cellulosic Coming To Push out Corn

— October 20, 2014

The last few months have been big for cellulosic biofuels in the United States.  The first of three commercial-scale cellulosic ethanol plants to come on line this year, Project Liberty, opened in Iowa in September.  In July, the U.S. Environmental Protection Agency (EPA) expanded the definition of the cellulosic biofuel pathway to include biogas used for transportation via compressed natural gas (CNG), liquefied natural gas (LNG), or electricity.  At full capacity, Project Liberty will produce 25 million gallons annually; the two other plants scheduled to open this year will run at 25 and 30 million gallons, respectively.  If the plants are successful, this could be the beginning of cellulosic ethanol supplanting corn-based ethanol’s hold in the U.S. biofuel market.

Cellulosic ethanol’s major advantage over corn-based ethanol is that its feedstock is organic material waste rather than food/grain.  This avoids controversial issues regarding food vs. fuel, and minimizes the conversion of arable land to farm land, which experts contend makes cellulosic ethanol far more environmentally sustainable and less politically divisive than corn-based ethanol.  The disadvantage of the fuel is that it’s ethanol.

Flat Gas

Ethanol’s end market is gasoline, primarily used for light duty vehicles in the United States and Brazil.  It can only supply up to 10% of the fuel in a vast majority of the vehicles in use in the United States due to regulatory constraints and reluctance on the part of automakers and fuel retailers to adopt higher ethanol-gasoline blends.  If gasoline consumption in the United States was growing, this aspect wouldn’t be a problem, but it’s not.

In Navigant Research’s reports, Global Fuels Consumption and Light Duty Vehicles, it is estimated that light duty vehicles account for 94% of gasoline consumption in the United States.  Over the next 10 years, the light duty vehicle fleet will become far more energy efficient, thanks to vehicle electrification, vehicle lightweighting, and engine downsizing.  The end result is that the amount of gasoline-ethanol blends consumed in 2023 will likely be 12% less than 2014 levels.

The Cellulosic Edge

Consumption of ethanol is driven by the Renewable Fuel Standard (RFS), which mandates specific volumes of biofuels be blended into the fuel supply.  The standard is adjusted each year to reflect anticipated industry production volumes by biofuel pathway, so that biofuel producers can be assured their product will be purchased by blenders.

Given cellulosic ethanol’s sustainability appeal over conventional ethanol, and the limited market in which these pathways compete, and despite the high cost of cellulosic compared to conventional ethanol, it’s likely that annual adjustments to the RFS will ensure that cellulosic production feeds into the U.S. fuel pool at the expense of conventional ethanol.  That means that the EPA may be inclined to lower conventional ethanol mandates against increases in cellulosic capacity – making cellulosic more valuable to blenders than conventional ethanol.  As a result, conventional U.S. ethanol will likely become an export fuel, going to foreign markets that currently make up a little over 45% of the global market.

 

Tesla Breaks into Japan

— September 25, 2014

Last week Tesla opened its Japan sales operation with Elon Musk handing over nine keys to the first Model S owners in the country.  The event is significant because foreign automakers, especially U.S. ones, sell very few vehicles in Japan.  Although the country’s vehicle market officially opened to limited foreign participation in the 1970s, despite extensive automotive trade negotiations between the United States and Japan, the country has effectively remained closed.  Nearly 96% of all vehicle sales in the country come from Japanese companies, while the remaining 4% come from German automakers, with a barely visible blip of around 1,000 vehicles coming from GM.  This has been frustrating for foreign automakers – but it’s also hindering Japan’s plug-in electric vehicle (PEV) market.

As of 2013, Japan is the third-largest vehicle market and the second-largest PEV market in the world.  PEV sales were initially strong, thanks to infrastructure developments and vehicle deployments by Nissan, Mitsubishi, and, to a lesser extent, Toyota.  However, Toyota and Honda have since scrapped most of their PEV development programs, and no new PEVs were introduced in 2014, until Tesla did so last week.  To provide some context, there have been 24 different PEV models sold in Norway in 2014, while only 7 (including Tesla and three variations of the Mitsubishi i-MiEV) have sold in Japan.

Flat through ‘14

As a result, despite significant growth in every other PEV market, PEV sales in Japan will likely remain flat in 2014, at around 30,000 units.  This means that the country’s market will fall to third behind China; it may also lose ground to Germany, France, Norway, and the Netherlands, winding up in seventh in 2014.  Given Japan’s significant foreign energy dependence issues (Japan essentially imports 100% of its oil), this is a problem.

PEVs have substantial energy efficiency improvements over conventional vehicle platforms that, if adopted en masse, could do a lot to reduce Japan’s dependency issues.  Additionally, the country’s subsidy program, large vehicle market, significant price differential between electricity and gasoline on a per mile basis, and well-developed public charging infrastructure present the optimum conditions for the PEV market.  Unfortunately, Japan’s traditionally isolationist national automotive policy is inhibiting its own national energy security and greenhouse gas (GHG) reduction goals.

 

Hybrids Need a Refresh

— September 18, 2014

Worldwide sales of hybrids through August were off 9% over sales during the same period in 2013.  The drop contrasts starkly with the last 3 years, which have seen January-August sales rise 65% from 2011 to 2012 and 24% from 2012 to 2013.  While the market for hybrids is certainly not going away – 2014 sales will likely hit 400,000 by year-end – it is becoming significantly more competitive, and expansion outside of the midsize hatchback segments that hybrids crowd is just not happening.

Toyota’s introduction of the Prius family in 2012, alongside a market for plug-ins that was limited to few costly models, signaled a revival of the hybrid market.  Since then, though, plug-in makers have cut costs sharply, and the number of available models has grown considerably.  Only 1/20th the size of hybrid market in 2011, sales of plug-ins are now one-quarter of hybrid sales.  Meanwhile, the difference between hybrids and conventional gas- and diesel-powered vehicles in terms of fuel economy is shrinking.

Weight Loss

Driven by Corporate Average Fuel Economy (CAFE) standards, automakers are introducing vehicles with stop-start systems that are already widely popular in Europe and have significant weight reductions through materials engineering and engine downsizing.  Tracked by the University of Michigan Transportation Research Institute (UMTRI), the average new vehicle sold in the United States hit 25.8 mpg last month ‑ 5 mpg higher than the 2008 average.

All of this means that, for new hybrids to succeed, they must show significant fuel economy savings over conventional competitors ‑ and at a price point significantly lower than plug-in rivals (minus government subsidies).  Or they must be new: they have to fill a segment outside the densely populated small hatchback or offer cutting-edge technologies that can grab some of the spotlight that Tesla, Nissan, BMW, and Chevrolet eat up with each new plug-in electric vehicle (PEV) introduction.

Ford has announced it will introduce a new dedicated hybrid – another small hatchback — to compete with the Prius in late 2018, and industry sources believe that Hyundai may also soon join the fray.  But the wisdom of these introductions is questionable if current trends continue.  Breaking into the cross-over market, as plug-ins are poised to do next year with the Model X and Mitsubishi Outlander PHEV, would do much to keep hybrids relevant.  Bringing a diesel hybrid over from Europe would also help capture car buyers’ imaginations.

 

How Can the United States Pay for Road Upkeep?

— July 17, 2014

More vehicles throng U.S. roads each year, expansion necessary to support them and with less money to fund road repairs.  The root of the problem is that road construction funds are largely derived from taxes on gasoline and diesel fuel, and U.S. consumption of both is declining and will continue to decline.  The increasing fuel economy of new vehicles combined with rising penetrations of alternative fuel vehicles (AFVs) is having a marked impact on U.S. fuel demand.

In the upcoming report Global Fuel Consumption, Navigant Research forecasts that liquid fuels (gasoline, diesel, and biofuels) consumed by U.S. vehicles will decrease from approximately 160 billion gallons in 2014 to around 104 billion gallons in 2035.  Meanwhile, forecasts from the Navigant Research reports Light Duty Vehicles and Medium and Heavy Duty Vehicles indicate that the U.S. vehicle fleet will grow from approximately 250 million to nearly 270 million in 2027 before beginning a slow decline.

More per Gallon

If the status quo funding mechanism is maintained, annual federal gasoline and diesel tax revenue will decline from current levels of about $30 billion to near $20 billion in 2035.  Meanwhile, over the same time period, the fleet of vehicles in use will grow by 10 million.  However, in the near term, the federal Highway Trust Fund and Mass Transit Fund are headed for insolvency before the end of the year.

A number of short-term funding options have been proposed that will likely push a decision on a long-term solution out past the November mid-term elections.  However, one long-term solution emerged last month from two U.S. senators who proposed raising the federal gasoline and diesel tax by $0.06 per gallon over 2 years and then indexing the tax to inflation for following years.  The tax has been stagnant since 1993, at $0.184/gallon of gasoline and $0.244/gallon of diesel.  Raising it would probably be the easiest long-term solution to implement, since the machinery for tax collection is already in place.

U.S. Federal Gasoline/Diesel Tax Revenue and Vehicles in Use, United States: 2014-2035

(Source: Navigant Research)

What this proposal has in ease of implementation, though, it lacks in political appeal and fairness.  Taxes are a bitter pill for any Republican member to swallow, and pushing through a hike on gasoline and diesel, no matter how small or sensible, is likely to be impossible.  Additionally, as the tax stands now and the proposal will maintain, motorists who drive newer fuel efficient vehicles pay less tax.  Those who drive AFVs pay no tax per mile driven, despite the fact that they are using the same roads as owners of less fuel efficient conventional vehicles who bear more of the tax burden.  Since the tax was designed to make those who use the road pay for the road, the above scenario is an unintended consequence to the advantage of alternative fuel and fuel efficient vehicle owners.

Dollars per Mile

In early 2009, Secretary of Transportation Ray LaHood recommended that the federal government should look into a vehicle miles traveled (VMT) tax.  The VMT tax would clock vehicle owners’ mileage and then tax them on a per-mile basis.  While this solution would not be easy to implement, it would be a fair way of collecting taxes in line with the original purpose of federal gasoline and diesel taxes.  It could also be used as a tool to manage traffic along specific congested corridors.

Despite the suitability of a VMT tax, it is unlikely it will emerge as a legitimate policy option in the near term, due to a lack of political support and a tested method for implementation.  Rather, owners of older conventional vehicles will likely pay more at the pump – or traffic is only going to get worse.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Scott Shepard","path":"\/author\/scott-shepard","date":"10\/22\/2014"}