Navigant Research Blog

E-Scooters Get Their Own Network

— January 5, 2015

A San Francisco-based startup with Asian roots called Gogoro announced on January 5 that it is launching a line of futuristic battery-powered electric scooters and an e-scooter charging network that, for a monthly fee, will provide unlimited battery swapping and cloud connectivity.  The concept of battery swapping for electric vehicles has been tried before – most notably with the epic failure of Israeli startup Better Place (and with a little bit more success by Tesla Motors).  But this venture might have a much happier ending.

To understand how Gogoro might succeed, let’s first examine why Better Place failed.  Although the company made a number of personnel and strategic missteps, the fundamental problem of the Better Place model was that the battery switching stations were too expensive and too complex.  Another major problem was that the financial projections didn’t pan out because battery costs were still too expensive at the time of the firm’s launch in 2012.

Swap It Out

Gogoro, which has engineering facilities in Taiwan and whose CEO, Horace Luke, was the design mastermind behind Taiwanese cell phone manufacturer HTC, solves the complexity issue with a smaller battery pack: the Gogoro Smartscooter uses two batteries, each about the size of a Kleenex box and containing about 1 kWh of energy.  The user merely takes the battery out by hand and inserts it into the vending machine-like switching station.  Six seconds later, a fully charged battery comes out of the machine and can easily be reinserted into the scooter.  A fully charged pair of batteries provides the user almost 60 miles of range in an urban driving environment.

To solve the battery cost problem, Gogoro has two aces up its sleeve.  The first is timing: we are in a period of dramatically shrinking lithium ion battery costs.  What would have cost more than $1,000 per kWh a few years ago can be had for as little as a third of that today.

Gogoro’s other advantage is its strategic partnership with Panasonic, one of the largest battery manufacturers in the world.  Gogoro will use the same battery cells, made by Panasonic, that are used by Tesla Motors for its Model S battery pack.  And if it can grow quickly enough, Gogoro will get Tesla-type volume discounts.  Navigant Research estimates that Tesla pays approximately $200 per kWh for its Panasonic cells today, and that price is expected to drop as low as $130 per kWh by 2020 once the recently announced Tesla/Panasonic Gigafactory is up to full capacity.

Cool and Clean

Gogoro has one more big advantage going for it: the world’s young people are begging for alternatives to car ownership.  They want clean, affordable, yet stylish transportation alternatives.  This trend is as true in scooter-crazy Asian cities as it is in North America.  Traditional scooters are too dirty, dorky, and noisy to provide an appealing car substitute for most young people.  But Gogoro’s scooter will be affordable enough (although pricing hasn’t been announced, it should be cheaper than most other e-scooter options because the battery isn’t part of the purchase price) and stylish enough (CEO Horace Luke is a renowned industrial designer whose accomplishments include the Xbox game console and the much lauded HTC smartphone lineup) to be attractive to young urban dwellers in many countries.

 

With New Plant, Alevo Claims Major Battery Advances

— November 10, 2014

Swiss manufacturer Alevo has launched a new battery and grid storage division in North Carolina that it promises will lead to hundreds of megawatts worth of battery-based grid storage projects.  The U.S. subsidiary hopes to manufacture its formulation of lithium iron phosphate (known in the industry as LFP) batteries in the 3.5 million square foot Concord, North Carolina factory.

Alevo’s battery chemistry is not new – there are dozens of LFP manufacturers (most based in China) cranking out hundreds of megawatts of batteries for portable power and grid storage applications.  However, Alevo claims that its formulation of the chemistry (primarily its secret electrolyte additives) will enable its LFP batteries to last as long as 43,000 cycles of full discharge.  If such a cycle life is proven in the field, this chemistry will represent the most durable lithium ion (Li-ion) battery available today.

An Impressive Debut

Alevo also claims that it uses a non-flammable electrolyte, which makes its battery less prone to catching fire than most grid storage batteries.  Although the company won’t discuss manufacturing costs, LFP batteries have relatively cheap material inputs, opening up a potential path toward low-cost cells.

During the unveiling ceremony at the Concord plant (complete with a drawing back of the curtains on stage, swirling searchlights, and wolf whistles from the employees that packed the audience – all for a 20-foot shipping container), the air-cooled battery bank was displayed, along with its Parker Hannifin inverter and fire detection and suppression equipment.  Alevo also highlighted its big data and analytics capabilities, which it says are needed to help deploy and optimize the energy storage system.

While Alevo seems to have plenty of capital behind it (Reuters reported that Swiss investors have put up more than $1 billion), as well as several global partnerships, it has significant challenges ahead.  The most important of these focus on the battery cells themselves: real-life durability and manufacturing cost.

Two Challenges

On the durability front, Alevo’s internal accelerated testing of 43,000 deep discharge cycles is indeed impressive.  But accelerated testing is an imperfect science.  Batteries tend to perform very differently in the real world over the course of decades, as opposed to laboratory benchmark tests that model expected long-term battery durability.

As for manufacturing costs, Alevo has a hard mountain to climb to learn how to become a battery manufacturer, especially with the challenges that LFP technology brings to the factory.  Unlike other Li-ion chemistries, LFP requires very finicky vacuum technologies that make large-scale manufacturing hard to do efficiently.  Many other LFP manufacturers have assumed cheap manufacturing costs only to find that the chemistry left them with much higher costs, lower yields, and more failures than expected.  While other cobalt-based Li-ion chemistries have higher costs for material inputs, the manufacturing processes are much simpler and easier to scale.  Alevo’s claims are impressive; proving them will be another matter.

 

Energy Storage Enjoys a Breakthrough Day

— November 5, 2014

While most Americans were paying attention to election results, news emerged out of California that truly heralds a new era for the energy storage industry.  Southern California Edison (SCE) announced that it will acquire 2,221 MW of new generation assets, of which 250 MW will be energy storage systems.  This is the end result of the lowest-cost resource request for proposal (RFP) that is designed to eventually replace the generation provided by the shuttered San Onofre nuclear power plant.

While the sheer scale of the announcement is staggering (no utility has ever purchased 250 MW of non-pumped hydro energy storage before), the details of the announcement are even more impactful.  SCE was expected to use some of this bid for energy storage (it listed energy storage as a preferred resource on the RFP), and Navigant Research assumed the energy storage part of the purchase would be about 50 MW.  By ordering 5 times that amount of energy storage, SCE is making a very loud statement about how highly it values energy storage as a grid management tool.

The Land Rush Begins

Another important aspect of this move is that it was done on a completely level playing field.  SCE decided to purchase 250 MW of energy storage because it felt it had a higher value than any other generation asset (including natural gas, wind and solar).  That in itself is an extremely important positive note for the energy storage industry.

Even more important for the industry is that SCE’s big vote of confidence for energy storage happened just before the launch of three big RFPs that were designed as part of the energy storage mandate that California is forcing on the big utilities.  By December 1, 2014, all three of the large investor-owned utilities in the state will introduce a total of more than 200 MW of energy storage purchases.  It’s the energy storage industry’s equivalent of the Oklahoma land rush.

Other Big Deals

A couple of other important nuggets regarding the SCE announcement:

  • AES Energy Storage will be building a 100 MW battery plant that will dwarf all existing battery power plants.  Over the last few years, AES Energy Storage has discussed how such a plant might work, but now it will have a chance to actually implement a battery peaking plant.  If this project is successful, it will open up a completely new business model for the energy storage industry that could, in the long run, be the largest segment of the stationary storage market.
  • San Francisco-based startup STEM won an 84 MW contract that will make up hundreds (if not thousands) of distributed battery packs working on the customer side of the meter.  Like many other behind-the-meter energy storage system integrators, STEM has preached the concept of distributed battery packs that, in aggregation, work like a virtual power plant (see Navigant Research’s report, Virtual Power Plants).  STEM will be the first company to implement such an idea at scale in the real world.  If it succeeds, then other players like Coda Energy and GreenCharge Networks will also benefit.

Whatever your politics, for the energy storage industry, it is morning in America.

 

Sunflower Concentrating Solar: 2,000 Suns You Can Touch

— October 6, 2014

A concentrating solar photovoltaic (PV) design from a Swiss company called D Solar shows a promising blend of multiple technologies that concentrates the sun by a factor of 2,000 but keeps the resulting temperature below the boiling point of water.

Concentrating solar uses mirrors to reflect sunlight onto a small PV chip to create electricity or on a heat collection liquid to create thermal energy.  The D Solar system does both at the same time.  The new design, called Sunflower, merges advanced concrete engineering with low-cost optics and a water cooling system designed by IBM scientists to provide a cheap method of turning sunlight into electricity and hot water.

At the heart of the Sunflower system is a receiver on which the sunlight is concentrated.  Any attempt at concentrating sunlight onto a PV cell faces a fundamental problem: concentrated sunlight gets too hot for the PV chip.  By running water through the chip at a high rate of speed, that heat can be carried away.  But cooling such a system is an extremely complex engineering task that requires space-age ceramics, precise flow control, and sturdy pumps.  IBM has been working on thermal control of computer chips at data centers, and its engineers saw a use for their cooling technology in the concentrating PV space.

Many Mirrors

Another fundamental problem of concentrating PV is that the mirrors or lenses used to concentrate the sunlight are often as expensive as the PV chips themselves.  To get around this, the Sunflower system uses stretched membranes of reflective plastic.  The Sunflower system resembles a large satellite dish, but instead of a sheer dish, the reflective area comprises multiple round mirrors, each consisting of a stretched foil that’s focused by putting it under vacuum pressure.  The pressure of the vacuum can alter the direction in which the foil reflects sunlight.  The entire dish is then covered by a bubble of another thin film of transparent plastic, which keeps dust, birds, and rain off the reflectors.

The sunlight is reflected onto a central receiver that contains the PV chip and the water-immersed ceramic receiver.  The dish is held up on a pylon of low-cost concrete, making all the materials in the device (save for the square inch of high-efficiency PV) very low cost.

Heat and Power

One of the economic attractions of the design is that, in addition to producing electricity from the PV chip, it also produces a significant amount of hot water, which can then be used for space heating, industrial processes, or even desalination.  The value of the electricity and the thermal energy together means more income can be produced by the same device.

While D Solar isn’t providing any cost estimates for the system (the small-scale prototype has not been completed yet), it’s clear that the design has the potential to be an extremely low-cost method of producing solar power.  While there have been many attempts at designing concentrating PV systems, none have quite been as unique and creative as the Sunflower system.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Sam Jaffe","path":"\/author\/sjaffe","date":"1\/30\/2015"}