Navigant Research Blog

How Oversupply Could Benefit the World Oil Market

— January 19, 2015

For economists, it has been fascinating to watch what’s been happening in the oil & gas market since OPEC’s meeting in November, when it decided (driven by Saudi Arabia) to maintain production of 30 million barrels of oil per day.  This decision, combined with the sharp rise in U.S. production and a decrease in demand driven from China’s slowing economy, has sent oil prices to their lowest levels since May 2009.  Saudi Oil Minister Ali al-Naimi has explained that OPEC’s reason for maintaining the production level is to recoup market share lost to what he considers high-cost or inefficient non-OPEC oil producers, such as Russia, Brazil, and Canadian tar sands producers.  Of course, there’s also a geopolitical side to the story, but let’s take a deeper look at the situation in economic terms.

The demand for oil is fairly inelastic to price; that is, as the price changes, demand stays relatively consistent, especially in developed countries.  As such, OPEC has been able to essentially set the price of oil by choosing how much to produce.  Over the past 5 years, however, non-OPEC oil production has exploded, especially in the United States.  The country, which was OPEC’s biggest customer only 10 years ago, is now the world’s largest producer of total oil (crude and natural gas liquids) and moving toward self-sufficiency.

Consumers’ Delight

OPEC has typically responded to increases in non-OPEC oil supply by cutting its own production in order to keep the price of oil above $80 per barrel.  Now it appears the oil market and OPEC have reached a turning point as the huge influx of supply and a slowing of demand growth from China and Europe (among other reasons) have sent the price of oil on a steady decline since June.

At the meeting in November, OPEC ministers faced unenviable choices.  They could cut production in order to raise the price of oil and increase their margins in the short term, but this would not have served them in the long run.  If only OPEC cuts production, not only do their competitors share the benefit of higher margins, but also OPEC concedes more market share.  Instead, OPEC decided to forgo profits in order to thin out the herd.  By declining to cut production, the Saudis hopes to drive higher cost producers out of business while giving oil-consuming economies a shot in the arm.

Thinning the Herd

As my colleague Richard Martin has pointed out, the stronger members of OPEC (i.e., Saudi Arabia and Kuwait) can likely withstand drastic price declines, while the weaker members (Venezuela, Iran, Nigeria, and Algeria) could face economic disaster.

The current market trajectory will end up benefiting those countries that have a comparative advantage in oil production, as it should, and it’s likely that the market will be left more efficient and better off in 2 to 5 years as a result.  According to some, the U.S. might actually be better positioned for a price war than Saudi Arabia, which as a society has grown accustomed to the benefits of $100/barrel oil.  According to Naimi, we may never see $100/barrel oil again.  As far as he’s concerned, Saudi Arabia and OPEC will see this price war through, regardless of how low it goes: “Whether it goes down to $20, $40, $50, $60, it is irrelevant.”

As for the effects of all this on the natural gas market and renewables, that’s for another blog.  The December issue of Navigant’s NG Market Notes includes a great infographic about the breakeven prices of oil for producers around the world.

 

As Coal Declines, Low-Emissions Engine Plants Spread

— December 22, 2014

In September, the world’s largest reciprocating engine power plant was completed in Jordan.  IPP3, as it’s called, has 38 Wärtsilä 50DF engines, with a total capacity of 573 MW in the extreme desert conditions of Jordan.    The plant uses tri-fuel engines that can run on natural gas, heavy fuel oil, and light fuel oil.  They can start and ramp up to full capacity in less than 10 minutes, and they can do this multiple times a day without any maintenance cost impact.

The modular nature of the plant also allows it to operate at peak efficiency (45%-50%) across its entire output range by shutting down individual engines as needed and leaving others at high load.  In addition, the plant will enable Jordan’s existing turbine plants to operate more efficiently, as they will be used for baseload while IPP3 fills in the gaps where there is fluctuation in demand.

Reliable, Flexible, and (Relatively) Clean

IPP3 is fitted with a nitrate (NOx) control system for reducing emissions and meeting strict environmental health and safety guidelines set by the International Finance Corporation.  The plant follows international requirements for sulfides and particulates as well, and it is expected to produce 35% fewer carbon emissions than an existing steam turbine plant would if both used heavy fuel oil.  IPP3 will also have a close to zero usage of water once gas is employed as fuel, minimizing its environmental footprint.

So what makes this plant important?  It’s important because before IPP3, Jordan’s utility professionals had never contemplated the installation of a reciprocating engine plant, preferring to generate baseload power through combined-cycle gas turbine (CCGT) facilities, which have peak efficiencies of 55% to 60%.  It’s also important because many utility professionals around the world, not just in Jordan, are looking for a solution that is reliable, offers fuel and operational flexibility, is quick-starting and efficient across a wide range of loads, and consumes less water and produces fewer emissions.

Reciprocal Benefits

And, as in Jordan, many other utility professionals are choosing reciprocating engines.  Wärtsilä alone has been installing an impressive number of large gensets recently.  For example, a 175 MW gas engine plant was completed by Wärtsilä in South Africa for Sasol, one of the country’s largest industrial companies, in December 2012.  The company is also in the process of building the 200 MW Pesanggaran Bali power plant, which will be the largest engine-based power plant in Indonesia when it is completed in 2015.

In the United States, Wärtsilä has been contracted to supply a 56 MW Smart Power Generation power plant in Oklahoma, and the company is expected to install a 50 MW plant in Hawaii on the island of Oahu, pending approval of the Hawaii Public Utilities Commission.  There is also a 225 MW plant being proposed in Texas and, reportedly, another 225 MW plant already under construction in Oregon.  All of the plants in the United States will be used to balance wind and solar generation on the grid.  With cheap natural gas, emissions standards, and the grids around the world becoming increasingly unstable, it appears that reciprocating engines’ stock is on the rise.

For more detail on the future of reciprocating engines, please see Navigant Research’s report, Natural Gas Generator Sets.

 

A Better Way to Extract Shale Oil

— November 5, 2014

Last month the Colorado Fuel Cell Center (CFCC) at the Colorado School of Mines hosted the first public demonstration of IEP Technology’s Geothermic Fuel Cell (GFC).  This innovative technology uses the waste heat produced by fuel cells to convert the kerogen in oil shale into unconventional hydrocarbons onsite.

Using standard fuel cell technology, the GFC flips the application on its head by taking a heat-first, power-second approach.  The system uses solid-oxide fuel cells, manufactured by Delphi Automotive, in tubular modules that can be linked end-to-end to create a long string of fuel cells encased in a steel cylinder.  The long-term plan is to insert vertical stacks that are up to 1,000 feet long into oil shale formations, spaced 10 to 15 feet apart in a grid pattern.  In this configuration, the fuel cells can generate temperatures of up to 1,200°F, which will be used to heat the formation and drive pyrolysis (thermal decomposition of the oil shale).

Giving Shale Oil a Better Name

Currently, shale oil is most commonly extracted ex situ, or offsite.  The oil shale is mined and taken to an above-ground processing facility where it is crushed, heated to temperatures suitable for pyrolysis (500-1,100°F), and the unconventional hydrocarbons (shale oil and natural gas) are collected, cooled, and refined.  This process is expensive, inefficient, and extremely damaging to the environment, and it has earned shale oil extraction a bad name.

IEP’s technology, on the other hand, performs the processing in situ, or onsite, by applying heat underground and extracting the shale oil and natural gas via wells that sit among the boreholes, leaving the formation intact.  The only byproducts are electricity that can be sold back to the grid, small amounts of clean water, and CO2.  It may seem odd to think of the electricity as a byproduct, but that’s the beauty of IEP’s approach.  If a single 1,000-foot stack contains 100 to 300 of Delphi’s 1.5 kW fuel cells, you’re talking 150 kW to 450 kW of baseload power per stack over a projected 5-year lifespan, which is no small thing when you consider the potential revenue.

IEP estimates that the gross capital and operating costs of a GFC installation will be less than $30 per barrel of shale oil when the revenue from the sale of electricity and surplus gases is taken into consideration.  This would give GFCs a significant cost advantage over the competition.  More significantly, IEP’s technology allegedly has an energy return on energy invested (EROEI) of 22:1, which would be a monumental improvement on the current best-in-class EROEI for oil shale, which is closer to 5:1.  The technology seems easy enough to replicate, but IEP has patented its idea, which should give it some protection from competitors.

The Real Cost

However, a couple of questions come to mind.  First, what will the actual installed cost of the systems be?  It could take thousands of fuel cells to develop a single formation.

Second, you have to run a fuel source out to the site, which is probably fairly remote, in order to run the GFC.  You also have to run transmission lines out to the site and build a substation in order to sell power back to the grid, and the fuel cells will only be running at that site for 5 years, so it’s a temporary installation.  How many utilities would be interested in doing that?  These questions must be addressed, and we won’t know how the economics and EROEI shake out until mid-2015, when the GFC is expected to be field-tested.  But this appears to be a very promising technology.

 

Solar Subsidies Attract Financial Schemes

— October 20, 2014

Arizona Public Service (APS) and Tucson Power have recently come under a lot of scrutiny for their proposed rate-based solar programs.   The complaint from private sector companies is that rate-basing (i.e., the utility practice of raising funds for capital investments by increasing electricity rates) would create an uneven playing field in the solar industry, because rate-basing a capital expenditure gives utilities a guaranteed rate of return.  As SolarCity’s vice president, Jonathan Bass, put it, “If there were ever a reason for a regulatory body to exist, it would be to stop a state-sponsored monopoly from unfairly competing against the free market in an entirely new industry.”

That’s hard to argue with.  However, I would add that another reason for a regulatory body to exist is to stop the free market from abusing the subsidies that are so crucial to an entirely new industry.  In the spirit of fair-minded analysis, let’s take a closer look at the solar industry and at how level the playing field actually is.

Pump and Dump

First, let’s examine the solar developers (SolarCity, Vivint, SunRun, Clean Power Finance, etc.) whose solar lease and solar loan programs are responsible for catapulting the industry into the period of rapid growth we’re seeing today.  Critics argue that solar developers base their business models around building solar arrays on the cheap and claiming an inflated fair market value (FMV) of the systems.  The FMV is supposed to reflect the fair price of a system, and it’s ultimately used by the government to determine the monetary value of the 30% income tax credit (ITC) that goes back to the owner of the system.  Ironically, the FMV is becoming increasingly difficult to determine as more solar companies are vertically integrating, which has made the true system costs less transparent.

For systems that are being leased (which are most systems), the owners and thus recipients of the ITC are actually third parties.  These third-party owners tend to be financial institutions, such as Morgan Stanley, Goldman Sachs, Credit Suisse, Google, and Blackstone, that are constantly looking for tax credits, and they have found a slam dunk as financiers of residential and commercial solar arrays.  Typically, the developers bundle a group of solar customers together into a tranche (essentially a bucket of leases), which is then backed by the third-party ownership groups.  The financial firms own the leased systems for 5 years and then dump them, but not before taking advantage of the Modified Accelerated Cost Recovery System (MACRS), which is a method of depreciation that allows third-party owners to recoup part of their investment in the solar equipment over a specified time period (5 years) through annual deductions.  Basically, MACRS represents an additional subsidy, with a net present value of 25% of the initial investment.

The Treasury Steps In

So between the 30% ITC and the 25% MACRS, the owners should be getting a 55% subsidized investment; but with the inflation of the FMV, it turns into a much larger subsidy, on the order of 80%.  Then consider the high rate of return (up to 15%) that investing in solar offers on top of all these subsidies, and it starts to sound pretty good to be a solar financier.  Solar developers readily admit that their business models are dependent on government subsidies, but this sounds like manipulation of those subsidies.  Indeed, this practice is currently under investigation by the Department of the Treasury.  While the developers claim they haven’t done anything wrong, if the government tightens the rules around the ITC or tries to recoup the inflated subsidies, it could be a major blow to the solar industry.

What’s more, the developers themselves don’t seem to be reaping the rewards of their innovative business models that have brought solar to the masses.  If anything, they seem to be bearing all the risk while the third-party owners reap most of the profits.  Is there some merit to rate-basing solar?  In my next blog, I’ll examine this question.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Taylor Embury","path":"\/author\/tembury","date":"5\/27\/2015"}