Navigant Research Blog

More EVs Might Mean Changes to Parking Garages

— May 27, 2015

The adoption of electric vehicles (EVs) seems to be unstoppable. In Electric Vehicle Market Forecasts, Navigant Research estimates that plug-in EVs will make up 2.4% of total worldwide light duty vehicle sales by 2023. EVs will thus have a profound impact on the electrical grid, but how will they affect buildings?

Currently, the most visible impact has been the proliferation of electric vehicle charging stations. Driven largely by LEED requirements and state-level incentives, many commercial buildings have dedicated parking spaces for EVs. Indeed, in some markets, EVs have enough of a presence that commercial buildings are installing charging stations in response to demand from the market. But, increased adoption of EVs may necessitate new paradigms for the design of parking garages.

The Solution to Pollution Is Dilution

Parking garages need ventilation. In addition to the carbon dioxide that contributes to climate change, internal combustion engines also emit a lot of other pollutants that are terrible to breathe. Parking garages need to exhaust these pollutants and replace them with fresh air in order to be compatible with human life. Building codes dictate the amount of air that needs to be exhausted based on the worst-case scenario: if every car in the garage was running at the same time.

This approach made sense when sensors and controls were expensive and difficult to use. However, with the sophistication of modern systems, demand-controlled ventilation (DCV) is becoming an attractive alternative to reduce energy consumption. DCV uses sensors to monitor air conditions and match the delivery of ventilated air with the actual need of the space. DCV saves substantial energy because the airflow that a fan provides has a cubic relationship with the power needed. As a result, halving the airflow of a fan reduces the power consumption to one-eighth of the full airflow. Some systems can reduce peak kilowatt-hour demand by up to 95%.

Unlike internal combustion engine vehicles, EVs do not create emissions that need to be exhausted (that happens at the power plant). So, in a future with all EVs, garage ventilation requirements can be drastically reduced. But, in the meantime, the presence of EVs in parking garages translates to greater savings through DCV operation.

 

Submarine Cable Project to Link Canada, New York

— May 26, 2015

The Champlain Hudson Power Express Project is an epic example of the creative solutions that major transmission utilities and third parties are undertaking to interconnect adjacent markets across borders. This hybrid 337-mile project will carry more than 1,000 MW of renewable power from Canada to the New York metropolitan areas. The project includes sections of high-voltage direct current (HVDC) submarine power cables running through Lake Champlain, the Hudson, East, and Harlem Rivers, with other sections using HVDC underground with the existing Delaware & Hudson Railroad and CSX Transportation railroad right of ways.

The $2.2 billion dollar project is expected to be completed and commissioned in 2017, linking the Montreal area to the New York City neighborhood of Astoria, Queens.  The transmission link between Canada and New York is being developed by Transmission Developers Inc. (TDI), a Blackstone Group, L.P, and is designed to transport electricity from hydropower and wind resources in eastern Canada and feed it directly into the New York City electricity market. The Quebec section of the line and high-voltage alternating current (HVAC) to HVDC converter station is being built and will be operated by TransÉnergie, the transmission division of Hydro-Québec, one of the largest Canadian utilities.

The following graphic shows the scope of the project, starting out at the Hertel converter station in Quebec, where HVAC is converted to HVDC.  The HVDC line runs under Lake Champlain for over 100 miles and then through railroad right of ways for 126 miles.  It then runs under the Hudson River to New York City over about 100 miles, with a few underground transitions in New York City.

Champlain Hudson Power Express

Champlain Hudson Power Express

(Source: Transmission Developers, Inc.)

It’s clear that these HVDC submarine and underground systems are complex solutions that have less environmental impact than overhead transmission lines with associated right of way and eminent domain issues.

The majority of HVDC submarine electric transmission projects are being planned and completed in the European market, where tremendous off-shore wind resources in the Nordic countries, Germany, and the United Kingdom are coming online. It’s great to see that creative projects such as the Champlain Hudson Power Express transmission system are also happening in North America. Over the next 5 to 10 years, this type of interconnection/intertie between independent system operator/regional transmission organization (ISO/RTO) regions and countries will be critical to delivering adequate and increasingly renewable power resources. For more information, look for my upcoming report (expected to publish in 2Q 2015) on submarine electric transmission, which will include regional and global forecasts for capacity and revenue through 2024.

 

 

Cutting-Edge Microgrid Projects Still Popping up in the United States

— May 26, 2015

The current edition of Navigant Research’s Microgrid Deployment Tracker gives credence to the idea that the Asia Pacific region may emerge as the market leader over the long term, with data collected from projects and project portfolios representing 47% of total global capacity as compared to North America’s 44% total global capacity market share. At present, however, North America remains king when it comes to actual operating projects. If looking at microgrids currently online, North America still leads by holding a nearly identical market share (66%) compared with data presented in the 2Q 2014 Tracker update (65%).

I want to highlight two project entries that show how the United States, due in part to new programs promoting community resilience, is pushing the envelope on both technology and business models.

Blazing the Trail

The first project, located on the East Coast, is a transportation microgrid known as NJ TransitGrid and located in the New Jersey Transit system’s service area. Beyond being America’s third-largest transportation system and serving nearly 900,000 passengers daily, the stretch of rail covered by the project is both an important access point to Manhattan and New York and is one of the most at risk for flooding. Existing railroad right-of-ways could be used to connect distributed generation (DG) from small wind, solar PV, and fuel cells to elevated power substations and energy storage. All of these components will be managed by smart grid technologies to integrate renewables and island the entire system during harsh storms such as Hurricane Sandy. It is anticipated that the system’s total generation capacity will eventually reach 104 MW, making it one of the largest microgrids in the world. New Jersey state officials expect the project to have sufficient capacity to power up rail stations between the cities of Newark and Hoboken, which are approximately 10 miles apart.

The second project is on the West Coast and is known as the Salem Smart Power Center. This project is an example of a partnership approach to development with an investor-owned utility (Portland General Electric) looking to vendors such as Eaton to help integrate battery energy storage solutions to help address the impacts of customer-owned solar PV on the utility’s distribution grid. The project, which incorporates 5 MW of conventional DG, solar PV, and a 5 MW battery, also sought to increase reliability for a mix of business (data center), institutional (National Guard), and residential customers. The resulting energy storage system from Eaton provides seamless support for loads in the event of an upstream outage. The intelligent energy storage system works with standby generators to create a high-reliability zone consisting of a feeder supplying community customers. The energy storage system supports the microgrid for several minutes while generators are started, creating a backup power supply, with tests showing the capability of carrying the entire load during transition to island mode.

Unlike the majority of microgrids deployed to date in the United States, which tend to focus on campus operations, the Power Center is instead seeking to bolster the utility’s reliability. As such, it is classified as a utility distribution microgrid (UDM). One noteworthy factoid derived from the newly published Microgrid Deployment Tracker is that such UDMs now represent 16% of total microgrid operating, planned, and proposed capacity, a segment category ranking only behind remote systems, which are largely deployed in the developing world and unique markets such as Alaska.

 

The Breadbasket Running Dry

— May 22, 2015

NASA scientists recently predicted that California has just 1 year of water left to the catastrophic tune of a million Facebook users simultaneously hitting the Share button. California’s water problems are not entirely self-inflicted, coming in the middle of what is reportedly the worst drought in 1,200 years. However, some of these problems are caused by poor water management.

California’s water laws dedicate around 40% of total water to farming and agriculture—about 80% of what isn’t strictly devoted to maintaining wildlife and the environment. Farming requires a lot of water, and California water law does not improve the situation. There is a huge incentive for farmers to waste water, meaning the so-called breadbasket of America can’t sustainably keep producing the same crops it currently does. California, if it were a country, would have the eighth largest economy in the world, so shutting down the pipes is not exactly an option.

Technology to the Rescue

So, what is being done to keep lawns green in The Golden State? Water appliance standards have been enacted, which are projected to save more than 100 billion gallons per year. But even massive usage restrictions won’t be enough to keep California going. William Shatner has proposed a $30 billion Kickstarter campaign for a pipeline that could transport water, above ground, from Seattle into Lake Mead. Orange County began recharging its drinking water aquifer with purified wastewater in 2008, but the catchphrase toilet-to-tap makes this a less-than-popular option in the public eye.

One solution that appears more glamorous is the desalination of seawater. In Carlsbad, California, construction is underway on a $1 billion desalination plant, the largest in the Western Hemisphere. Due to open in early 2016, this plant could provide up to 50 million gallons of fresh water each day, supplying around 112,000 households. Desalination is, however, massively expensive and can discharge large amounts of concentrated brine directly into the ocean. Permanent desalination plants (such as the one in Carlsbad) can only treat around 35%–50% of the water they bring in, according to Stanley Weiner, CEO of STW resources.

Salttech, a Norwegian company, recently demonstrated its DyVaR Zero Liquid Discharge (ZLD) water processing technology in Midland, Texas. This technology promises to recover up to 97% of the water processed, and discharge only solid salt and minerals, thus eliminating the problem of brine disposal to the ocean. Salttech has plans to begin an ocean desalination project on the coast of California. This technology also claims to be economical, reducing the cost of desalination from $1,850–$2,000 per acre-foot to $1,100–$1,350 per acre-foot, also according to Stanley Weiner. With the cost of desalinated water currently hovering around twice that of imported water, these technologies must make some major cost reductions before they can be widely adopted. Until then, California may have to start construction on Mr. Shatner’s pipeline.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Blog","path":"\/blog","date":"5\/28\/2015"}