Navigant Research Blog

Transmission Superhighway Takes Shape

— October 20, 2014

In a previous blog I focused on the expansion of high-voltage transmission systems driven by utility-scale wind generation in the multistate arc that stretches across the central United States, from the Texas Panhandle to North Dakota.  Many of us have underestimated the impact and potential of this resource as a contributor to many states’ renewable portfolio standard targets (RPS).  Headlines about new utility-scale solar projects obscure the fact that installed utility-scale wind capacity is at least 5 times that of solar.

Recently, I looked into the long term electric transmission plans for every region in the United States, and found interesting developments in the Southwest Power Pool (SPP) region.  SPP covers much of the Great Plains and the Southwest, including all or part of an eight-state area that includes Arkansas, Kansas, Louisiana, Mississippi, Missouri, New Mexico, Oklahoma, and Texas.  The geographical footprint of SPP overlaps slightly with other independent system operators (ISOs) and regional transmission operators (RTOs) such as Midwest Independent System Operator (MISO).  SPP’s footprint can be seen in the map below.

SPP Regional Footprint

 (Source: Southwest Power Pool)

In 2008, SPP announced that it plans to build the electric equivalent of the United States interstate highway system – an interstate transmission superhighway that would serve as the backbone of a higher capacity, more resilient transmission grid, while providing increased access to low-cost generation, improving electric reliability, and meeting future regional electricity needs.

The SPP transmission plans I saw show that this conceptual idea is beginning to come to fruition, as new 345 kV transmissions systems are being built and older systems are upgraded.  Many of these projects have been completed by the transmission owner/entities in the region to address congestion issues in corridors like the Omaha/Kansas City to the Texas Panhandle route.  The figure below shows recent transmission system builds and upgrades.

SPP Regional Transmission System

(Source: Southwest Power Pool)

On the Horizon  

Meanwhile, ABB has debuted new, 1,110 kV high-voltage direct current systems.  A recent announcement by ABB on new products with 1,110 kV high-voltage direct current capabilities raises the bar again.  Until this announcement, 765 kV lines were the largest capacity lines available, and most transmission lines are currently in the 230 kV to 350 kV sizes.  ABB and other vendors (such as Alstom Grid, General Electric, and Siemens) are focusing on the Asia Pacific markets in China and India, as well Northern Europe, where major utility-scale wind projects now under construction will need to be connected with urban areas.  ABB’s announcement is exciting because it raises the high-voltage capability to a new level, well above what we currently see here in the United States.  I can only imagine that ABB will be talking to SPP about how to take the transmission superhighway to the next level.

 

Solar Subsidies Attract Financial Schemes

— October 20, 2014

Arizona Public Service (APS) and Tuscon Power have recently come under a lot of scrutiny for their proposed rate-based solar programs.   The complaint from private sector companies is that rate-basing (i.e., the utility practice of raising funds for capital investments by increasing electricity rates) would create an uneven playing field in the solar industry, because rate-basing a capital expenditure gives utilities a guaranteed rate of return.  As SolarCity’s VP Jonathan Bass put it, “If there were ever a reason for a regulatory body to exist, it would be to stop a state-sponsored monopoly from unfairly competing against the free market in an entirely new industry.”

That’s hard to argue with.  However, I would add that another reason for a regulatory body to exist is to stop the free market from abusing the subsidies that are so crucial to an entirely new industry.  In the spirit of fair-minded analysis, let’s take a closer look at the solar industry and at how level the playing field actually is.

Pump and Dump

First, let’s examine the solar developers (SolarCity, Vivint, SunRun, Clean Power Finance, etc.) whose solar lease and solar loan programs are responsible for catapulting the industry into the period of rapid growth we’re seeing today.  Critics argue that solar developers base their business models around building solar arrays on the cheap and claiming an inflated fair market value (FMV) of the systems.  The FMV is supposed to reflect the fair price of a system, and it’s ultimately used by the government to determine the monetary value of the 30% income tax credit (ITC) that goes back to the owner of the system.  Ironically, the FMV is becoming increasingly difficult to determine as more solar companies are vertically integrating, which has made the true system costs less transparent.

For systems that are being leased (which are most systems), the owners and thus recipients of the ITC are actually third parties.  These third-party owners tend to be financial institutions, such as Morgan Stanley, Goldman Sachs, Credit Suisse, Google, and Blackstone, that are constantly looking for tax credits, and they have found a slam dunk as financiers of residential and commercial solar arrays.  Typically, the developers bundle a group of solar customers together into a tranche (essentially a bucket of leases), which is then backed by the third-party ownership groups.  The financial firms own the leased systems for 5 years and then dump them, but not before taking advantage of the Modified Accelerated Cost Recovery System (MACRS), which is a method of depreciation that allows third-party owners to recoup part of their investment in the solar equipment over a specified time period (5 years) through annual deductions.  Basically, MACRS represents an additional subsidy, with a net present value of 25% of the initial investment.

The Treasury Steps In

So between the 30% ITC and the 25% MACRS, the owners should be getting a 55% subsidized investment; but with the inflation of the FMV, it turns into a much larger subsidy, on the order of 80%.  Then consider the high rate of return (up to 15%) that investing in solar offers on top of all these subsidies, and it starts to sound pretty good to be a solar financier.  Solar developers readily admit that their business models are dependent on government subsidies, but this sounds like manipulation of those subsidies.  Indeed, this practice is currently under investigation by the Department of the Treasury.  While the developers claim they haven’t done anything wrong, if the government tightens the rules around the ITC or tries to recoup the inflated subsidies, it could be a major blow to the solar industry.

What’s more, the developers themselves don’t seem to be reaping the rewards of their innovative business models that have brought solar to the masses.  If anything, they seem to be bearing all the risk while the third-party owners reap most of the profits.  Is there some merit to rate basing solar?  In my next blog, I’ll examine this question.

 

Innovative Energy Storage Technologies Gain Ground

— October 18, 2014

According to the Navigant Research Energy Storage Tracker 3Q14, the 2007 to 2013 period has seen the commercialization of a number of key technologies in energy storage, including several advanced battery chemistries, flywheels, and power-to-gas.

The Energy Storage Tracker is a database of energy storage projects that tracks announcements and deployments of energy storage across a range of technologies in an effort to identify industry trends.  The chart below shows the deployed power capacity for six advanced storage technologies in utility-scale applications.  There was a peak in installed capacity across most of these technologies in 2011 and 2012 in response to stimulus funding under the American Recovery and Reinvestment Act.  The purpose of this funding was to jumpstart the energy storage market, and while 2013 was a slow year for most battery technologies, preliminary 2014 data (not shown) indicates improved numbers over 2013 levels.  In contrast to advanced batteries, flywheels and power-to-gas saw an uptick in deployed capacity from 2012 to 2013.

Utility-Scale Energy Storage Power Capacity by Technology, World Markets: 2007-2013

(Source: Navigant Research)

Playing Catch-Up

Although no single technology is a clear winner in the global stationary energy storage market, lithium ion (Li-ion) has arguably established itself as a key frontrunner going forward.  Over the past 13 years, sodium sulfur (NaS) batteries, manufactured solely by Japanese power infrastructure giant NGK, have established themselves as the clear leader in terms of installed power capacity in the stationary energy storage space, with 243.7 MW from 2007 to 2013.  However, publicly announced deployments are typically large orders in the tens of MWs, which results in peaks and troughs in NGK’s market activity.

Li-ion sits in second during the same time period, with 231.9 MW aggregated over all its subchemistries.  In 2013, Li-ion had the highest number of MW installed and managed to keep output steady with 2012.  Of this 231.9 MW, lithium iron phosphate (manufactured by A123 Systems, now NEC Energy Solutions and BYD) accounts for at least 114.8 MW, lithium titanate (manufactured by Altairnano and Toshiba) accounts for at least 10.6 MW, and lithium manganese spinel (manufactured by Samsung SDI and LG Chem) accounts for at least 16 MW.

Peaks and Valleys

Other technologies that have seen significant deployments from 2007 to 2013 include advanced lead-acid batteries (71.4 MW), the vast majority provided by Xtreme Power (now a part of Younicos).   More than 58 MW worth of advanced flow batteries were deployed, primarily by ZBB and Premium Power, during the same time period.  In addition, 50.9 MW worth of flywheels were deployed, with 45 MW of that capacity coming from Beacon Power (though 4 MW of Beacon’s installations have since been decommissioned).   Lastly, 11.1 MW of power-to-gas storage capacity was deployed between 2007 and 2013, primarily by ETOGAS and Hydrogenics.

In the early period of commercialization, it’s not unexpected to see strong years and weak years for technology deployment.  Li-ion is maturing and is showing signs of being a fully commercial technology, similar to NaS batteries.  Advanced lead-acid, flywheels, and flow batteries will continue to grow, but in some cases will be limited due to the small number of suppliers in the market.  Power-to-gas is in the very early stages of commercialization, and will likely see growth and decline in deployed capacity in the demonstration stages before commercializing, similar to Li-ion.

 

Shakeout Looms in Fledgling E-Truck Market

— October 17, 2014

Despite significant government and private-sector investment over the past 10 years, the global market for hybrid, plug-in hybrid, and pure electric trucks has been slow to grow.  Although it’s challenging to get fleets to provide numbers on how many of these trucks  they are running – many companies view it as competitive information –the Navigant Research report, Transportation Forecast: Medium and Heavy Duty Vehicles, estimates that, in 2014, hybrid and plug-in technologies constituted well under 1% of medium and heavy duty (MHD) trucks fleets in North America and Western Europe.  This lack of progress matters, because MHD trucks account for 32.6% of U.S. fuel consumption.  Electrification could significantly reduce this rate of fuel guzzling.  Yet, as my colleague John Gartner noted in a recent blog, there is a real lack of PEV options in the trucking world.

Investment in these technologies has borne fruit, however, and will help the electric drive truck market grow.  Deployments have helped fleets determine the applications for which hybrid or plug-in trucks will work best, both in the sense of being able to meet the demands of the duty cycle, but also providing the greatest fuel savings benefit.  The range of MHD truck applications into which hybrid and plug-in technology can be integrated is broad, with widely varying performance requirements.

Filling the Gaps

First are vocational applications, including delivery and distribution trucks, such as refrigerated vehicles and service vehicles, especially those used by the utility and telecommunications sectors.  And within these segments, there is a multitude of usage patterns.  Delivery trucks may be long haulers, traveling at steady, high speeds; used for suburban delivery, operating with both high and low speeds; or used for delivery exclusively within an urban center, with stop-and-go driving and very low mileage.

All of these variances mean that there is no single technology that will meet all the needs of the trucking sector.  Thus, this sector will be highly segmented, with each technology option fitting into certain niches.  While hybrids have no range limitations, it can be challenging to achieve payback of the price premium unless the vehicle operates with some stop-and-go driving and accrues significant mileage – probably a minimum of 20,000 miles annually.  By contrast, while the range of a pure battery electric truck has proven too short for most applications, these trucks are ideal for deliveries within an urban center.  This application is likely to see more interest in the Western European market in particular, as cities are increasingly looking to limit vehicle access to the city center.

Winnowing Ahead

So, as the British say, it’s horses for courses for the trucking industry.  This will pose a challenge for the sector given the very high percentage of small firms supplying this market.  These are companies that may struggle to stay afloat in a market with low volumes in its early stages.

But pressure on truck OEMs and fleets to reduce the environmental impacts of their vehicles – a major theme of the Automotive Megatrends conference held by Automotive World in Brussels in September – is likely to increase.  A small company with a proven technology will find increased interest from fleets to trial new vehicles and perhaps interest from the major vehicle manufacturers in securing access to their technology through investment or acquisition.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Blog","path":"\/blog","date":"10\/20\/2014"}