Navigant Research Blog

Demand Response Will Improve EV Economics

John Gartner — February 17, 2014

With EVs selling in the U.S. by the thousands each month, their collective impact on the grid is getting increasing attention from utilities that are looking to reward EV owners for helping to balance power supply and demand.  EVs give power providers a new resource for smoothing peak loads and contending with the rising amount of variable power produced by renewable solar and wind assets.

For several years organizations such as the SAE, IEEE, and SGIP have been creating standards to enable smart grid equipment to communicate with EVs and their charging stations. This “smart charging” technology will delay or ramp up vehicle charging in response to changing grid conditions, including through demand response (DR) programs.  According to Navigant Research’s Vehicle to Grid Technologies report, by 2020 EVs enrolled in commercial DR programs will be able to curtail up to 272 MW of peak load in North America, which will come in handy on those hot afternoons when power demand outpaces supply.

Utilities are slowly removing humans from the DR equation through automated demand response systems.  According to Navigant Research’s recently published report, Automated Demand Response , roughly $13 million is expected to be spent on ADR globally in 2014, with investment rising to $185 million in 2023.

ADR Spending by Region, World Markets: 2014-2023

 

(Source: Navigant Research)

EVs connected to charging equipment using service provider Greenlots’ software platform will be able to participate in demand response thanks to a software upgrade.  Greenlots announced last week that the OpenADR Alliance has certified its SKY EV charging platform as compliant with OpenADR 2.0b, a standard that utilities are rallying around to send pricing information and demand response signals.

Utilities compensate demand response participants when they voluntarily reduce their consumption, which in the case of EVs could include payments to “site owners” where the vehicles charge, automotive companies (which can aggregate the power consumed by EV drivers) and the vehicle owners themselves. While slicing the revenue this way reduces the money available to EV owners, the payments could reduce the cost of vehicle charging and make EVs a more attractive purchase.

For example, employers could offer free or heavily discounted EV charging to workers who agree to participate in the company’s DR program.  Electricity vehicle charging amounts to only 25-30% of the cost of gasoline to power a vehicle, and dropping the “refueling” cost to close to zero would shorten the payback of switching to electric drive.

In the future, utilities could take advantage of this new grid-to-vehicle communications platform to prevent transformer overheating, which is expected to be the most common problem for the grid caused by the proliferation of EV charging.  However, because of the cost of adding sensors to transformers that would detect stress, utilities are likely to wait until the current installed equipment fails before replacing it with EV-friendly technology.

Leave a Reply

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Energy Management, Energy Storage, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Grid Practice, Smart Transportation Practice, Utility Innovations

By Author


{"userID":"","pageName":"Demand Response Will Improve EV Economics","path":"\/blog\/demand-response-will-improve-ev-economics","date":"4\/23\/2014"}