Navigant Research Blog

Google Glasses Best Use: Safer, More Efficient Driving

Sam Jaffe — March 28, 2013

A West Virginia legislator recently called for the use of Google Glass – a new consumer electronic device about to be launched by Google – to be banned while driving cars. The politician claims it is an attempt to avoid distracted driving. Unfortunately, he’s got it backwards. The use of Google Glass while driving should be encouraged, not forbidden. It offers a safer and more efficient user interface than we have today.  It also opens up possibilities for better control of the car, which means better mileage and less consumption of gasoline society-wide.

The fact is that the current practice of looking down to scan instrument panels or change the radio station is inherently unsafe. The Air Forces of the world realized that long ago and now the use of the head-up-display (HUD) is widely used by fighter pilots. HUDs were first developed for fighter pilots as a means to keep their line of sight pointed straight ahead while still being able to scan their instruments. The first HUD’s projected instrument displays onto the cockpit glass. Unfortunately, researchers found that this led to the pilots’ committing the sin of cognitive tunneling – the act of focusing on an item in the near field of vision instead of keeping their eyes focused at infinity on the wide field of vision (a good thing to do when you’re in the middle of a dogfight). Subsequently, HUDs were redesigned to give basic information in as visually simple a fashion as possible. By keeping only a few key readings on the windshield and displaying the data in simple geometric forms, the pilots soon found themselves permanently focusing on the wide field while subconsciously absorbing the information that was being presented to them – the ideal way to use an HUD.

A Google Glass-type device, likewise, is an ideal form factor for presenting limited but crucial information to a driver without interrupting their line-of-sight. The limitation of data is key: the answer to cognitive tunneling is limiting the amount of data being presented. The driver isn’t there to read a book, after all. By using an intelligent device like Google Glass, the car can present only the information the driver needs to see at the present moment (an unsafe speed warning, an upcoming turn to be made, an empty gas tank, etc.). The device can also bring advanced safety systems into play by broadcasting lane drifting warnings or other cars approaching that might warrant defensive maneuvers. Google Glass, all in all, has the potential to significantly add to the safety of the driver and riders.

Another key element that Google Glass can deliver is useful voice control. Although voice control is improving in automobiles, it is far more difficult to yell a perceptible command at a device that is 2-feet away from the driver’s mouth (ask anyone who has used Ford Sync about this issue) than it is for a device that the driver is wearing. Additionally, Google Glass is rumored to have bone conduction capabilities, meaning that it always detects when the wearer (and not an inconsiderate passenger in the backseat) is speaking.

The utility of Google Glass doesn’t have to end there. If a driver wants to save more fuel, a Google Glass app could provide an icon that provides persistent feedback on their driving habits. Simple changes to driving habits can easily lead to significant fuel savings. Too hard on the brakes? The icon could vibrate. Accelerating too quickly? The icon could glow yellow. That sort of persistent feedback is not possible from a smartphone or an instrument panel on the dashboard, but it could be easily processed by the wearer of a Google Glass device. This kind of driving would be especially advantageous for drivers of hybrids and pure electric vehicles, since optimization of regenerative braking habits is one of the easiest ways to improve mileage.

With all of the good things that Google Glass can do, it needs to be emphasized that it, like any consumer electronics device, must be limited while the user is driving. There needs to be a “Drive Mode” that shuts off visual text alerts, emails, and movie streaming while the wearer is driving. If that happens, and if the price drops considerably from its current $1,500 peak, it will be the norm for drivers to buckle in, adjust their seatbelts, and turn on Google Glass.

One response to “Google Glasses Best Use: Safer, More Efficient Driving”

  1. Christof says:

    Talk about leaving the most important, and questionable “if” to the end –> If Google Glasses are made such that they turn off movies, texts, surfing the web, etc., exactly that which 99% of people would actually use the glasses primarily for, and exactly why they present such a danger. No, the only Google solution to the texting/sufing while driving epidemic is going to be the 100 percent computer driven Google car, whose time can’t come soon enough, especially for the thousands of people who are being killed, injured or maimed by texting/surfing drivers.

Leave a Reply

Your email address will not be published. Required fields are marked *

Blog Articles

Most Recent

By Date


Building Innovations, Clean Transportation, Digital Utility Strategies, Electric Vehicles, Energy Technologies, Finance & Investing, Policy & Regulation, Renewable Energy, Transportation Efficiencies, Utility Transformations

By Author

{"userID":"","pageName":"Google Glasses Best Use: Safer, More Efficient Driving","path":"\/blog\/google-glasses-best-use-safer-more-efficient-driving","date":"6\/24\/2018"}