Navigant Research Blog

New Relay Technology Is Transforming the Grid

James McCray — December 9, 2014

A major transformation is occurring in the electric transmission industry, as new digital technologies, high-speed communications, and big data analytics are being deployed to improve transmission grid reliability and resiliency.  This transformation starts at the basic level of protective relays – technology that has been utilized on the transmission grid for years.  These devices are beginning to evolve from mechanical and solid-state relays to next-generation digital relays that perform all of the standard system protection functions, they but also have new digital capabilities for phasor measurement units (PMUs), data collection, and synchrophasor analysis that are largely untapped in today’s transmission utility market.

My conversations with major vendors, such as Schweitzer Engineering Labs (SEL), Alstom Grid, ABB, and General Electric (GE), as well as major utilities, indicate that the new technologies will change the way transmission operators detect and respond to transmission system disturbances and outages.  Now that network operators have the ability to detect sub-second disturbances in phase angle and voltage (which lead to outages and other reliability issues), with data coming in 30 to 60 times per second, a new major market for smart grid data analytics, visualization tools for the operations center, and communications is opening up.  Recent information on the nine U.S. Department of Energy smart grid demonstration projects in the United States, funded by stimulus grants, suggests that utilities are in the early stages of deploying these technologies, and that next-generation synchrophasor analytics, high-speed fiber communications systems, and high-speed sub-second automation solutions are in the early stages of adoption, at best.

Current Locations of PMUs on North American Power Grid 

(Source: North American SynchroPhasor Initiative)

In mid-October, I attended the 46th Western Protective Relay Conference (WPRC) in Spokane, Washington.  Along the Spokane River, salmon were rising in the afternoon to a late season fly hatch.  I’ll have to admit that I had not expected a conference featuring three days of technical papers that included some true power engineering discussions of second derivatives, Fourier transforms, phasor analysis, and phase angle diagrams, plus a couple of presentations on the use of comparative synchrophasor analysis for management of the transmission grid.  The 500-plus attendees included a mixture of vendors, experienced transmission planners and engineers, and a large number of new transmission engineers and trainees that were attending to learn from the experts from across the industry.

As advanced digital protective relays are deployed across the grid, consumers will benefit from improved reliability and grid resiliency.  Transmission utilities will also benefit, as they look to these lower-cost systems to add additional synchrophasor coverage and capabilities at a much lower cost.

Leave a Reply

Your email address will not be published. Required fields are marked *

Blog Articles

Most Recent

By Date

Tags

Building Innovations, Clean Transportation, Digital Utility Strategies, Electric Vehicles, Energy Technologies, Finance & Investing, Policy & Regulation, Renewable Energy, Transportation Efficiencies, Utility Transformations

By Author


{"userID":"","pageName":"New Relay Technology Is Transforming the Grid","path":"\/blog\/new-relay-technology-transforming-the-grid","date":"6\/17\/2018"}