Navigant Research Blog

Silicon Valley Tackles the Energy-Water Nexus

Noah Goldstein — June 18, 2014

No two systems in the built environment are more tightly linked than energy and water.  It’s hard to identify a pathway of conversion, conveyance, and utility of energy and water that does not touch the other system in one way or another.  This is commonly referred to as the energy-water nexus.  A recent Navigant Research report, Smart Water Networks, touched on this topic, in the context of water network innovations and their link to recent changes in the smart grid.

A recent blog by my colleague Eric Woods emphasized the future trends in water at a global scale.  According to the United Nations, water demand will increase by 55% by 2050, with drastic increases in the manufacturing sector.  At the same time, more than 40% of the global population is projected to be living in areas of severe water stress through 2050.  On the energy side, energy consumption is set to grow as well.  According to the 2013 International Energy Outlook, world energy consumption will grow by 56% between 2010 and 2040, mostly in the developing world.

(Source: U.S. Energy Information Administration)

Stresses on the System

And where do energy and water meet?  For consumers, look no further than your daily shower or dishwasher.  Heating water consumes 7% of commercial and 12% of residential energy in the United States.  With common appliances, it’s clear that making them more water or energy efficient cascades to savings of the other resource.

Another clear linkage in the energy-water nexus is hydropower.  In 2010, 16.1% of the world’s energy was generated using hydropower, and four countries – Albania, Bhutan, Lesotho, and Paraguay – generated all of their power from this source.

Looking back upstream in both energy and water, the linkages are equally impressive.  15% of all water is used for the energy sector.  Conveyance or pumping consumes more than 3% of the world’s energy, and in California alone, 7.7% of energy is used for water infrastructure.  Both systems are under stress from increases in demand, as mentioned earlier, but also from droughts, energy scarcity, and in some regions, political vulnerability (virtually all major river systems pass through more than one country).

Open Water Dive

Industry is taking notice.

At a recent Silicon Valley Leadership Group Energy and Sustainability Summit, I moderated a panel on how the cleantech space is making strides to manage the energy-water nexus in California and globally.  Chris King from eMeter (a Siemens company) discussed the need for open water data, analogous to the Green Button initiative.   Cynthia Truelove of the Center for Collaborative Policy argued that the disruptive technology that has made Silicon Valley so successful should carry over into creating disruptive policy that enables joint energy-water regulation that accounts for carbon impacts.  David Koller, from the Coachella Valley Water District, chronicled a pilot study that enabled customers to drastically cut down on water by providing them with smart water meters and relevant feedback in their bills.  From Imagine H2O, a water startup accelerator, Scott Bryan identified how WaterSmart, a company in its portfolio, is demonstrating success at becoming the “Opower for water.”  Some utilities are achieving a 5% reduction in residential water use in 6 months.

The discussion highlighted the need for a concerted effort among industry, policymakers, and end users to tackle the multifaceted challenge of the energy-water nexus of the present and the future.

Leave a Reply

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Silicon Valley Tackles the Energy-Water Nexus","path":"\/blog\/silicon-valley-tackles-the-energy-water-nexus","date":"11\/24\/2014"}