Navigant Research Blog

Up in the Sky, Drones Display Cleantech Potential

Mackinnon Lawrence — February 12, 2014

Unmanned aerial vehicles (UAVs) – a.k.a. “drones” – are beginning to make the jump from the war front to a domestic application near you.  Amazon’s use of drones in its proposed Prime Air service is perhaps the most high-profile example.  This service aims to disrupt inefficiencies associated with delivering products to customers’ doors via truck with drone quadcopters that make the same delivery in a fraction of the time.  Drones have begun to gain traction globally as delivery vehicles for everything from dry cleaning to beer and sushi.

Recent announcements point to the use of drones for everything from data collection to expediting renewable energy project development to the physical generation of renewable power.

Bird’s Eye View

The U.S. Geological Survey (USGS), in partnership with NASA and two academic institutions, has begun using drones to explore the vast expanse of the western United States for geothermal anomalies.  Using an experimental system called payload-directed flight (PDF) – essentially autonomous flight – researchers have been able to study and map the underground fracture and fault systems of a geothermal field in California.  The technique is being deployed in other remote geothermal landscapes as well.

Geothermal power holds tremendous promise as a source of renewable baseload electricity.  Currently accounting for more than 11 GW of installed capacity globally, or just 0.2% of the global installed base of renewable generation, geothermal power remains a vastly underdeveloped resource.

Two of the key barriers to more extensive development are long development timelines and substantial upfront capital requirements.  Initial scouting of potential sites for geothermal power development typically requires geophysicists to lug heavy backpacks full of equipment to survey vast swaths of remote landscape.  More promising sites are often surveyed by aircraft as well.  According to researchers utilizing drones for surveys, “Unmanned aircraft are ideal for scientific surveys because they can fly much lower than would be safe for piloted craft and are much cheaper to operate.”

Already used overseas in agriculture, drones also have the potential to improve economics across the bioenergy supply chain.

In Louisiana, drones are being used to monitor the health of sugarcane fields, collecting data at the individual plant level.  Close monitoring of individual crops is typically achieved by farmers physically inspecting their fields, a costly and labor-intensive undertaking.  Traditional airplanes are unable to capture data at the same level of detail.

Workhorse of Smart Energy

Borrowing from Amazon’s vision, drones may also have the potential to collect, move, and aggregate biomass materials, slashing one of the more significant (and often prohibitive) cost drivers for bioenergy.  With agricultural feedstocks used to make biofuels (e.g., cellulosic biomass to ethanol) typically representing 75% to 85% of the finished fuel cost – due in part to the manpower required to aggregate and collect the material – the use of drones could help overcome a challenging hurdle to more widespread commercialization of alternative fuels.

Google is among those companies taking notice of the cleantech drone phenomenon, having bought a slew of robotics companies in recent years.  Included in its portfolio of acquisitions is Makani Power, a renewable energy technology innovator aiming to disrupt the traditional wind turbine market by deploying high-flying autonomous wind turbines.  Makani has designed its drone kites to automatically take off and adjust themselves to the windstream to maximize energy production.

So-called “RoboBees” – developed at Harvard’s School of Engineering and Applied Science –demonstrate the confluence of drones and clean technology.  Designed to behave like a swarm of bees to carry out search and rescue operations or artificial pollination, the RoboBees’ need for high energy density power sources to sustain extended flight remains a key limitation to their use.  Advances in battery technologies could one day provide a compact enough power load that could extend flight times for both RoboBees and other drone hardware.

While 2014 is unlikely to be the year drones disrupt cleantech, the profusion of applications across the smart energy landscape suggests we’re just beginning to scratch the surface of their potential.

Leave a Reply

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Energy Storage, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Utility Innovations

By Author


{"userID":"","pageName":"Up in the Sky, Drones Display Cleantech Potential","path":"\/blog\/up-in-the-sky-drones-display-cleantech-potential","date":"7\/22\/2014"}