Navigant Research Blog

Virtual Power Plants Go Commercial

Peter Asmus — April 18, 2012

A Microsoft/OSIsoft survey released in early 2012 ranked renewables integration (43%) as the second most important reason for implementing a smart grid, behind smart metering (71%).

A forthcoming report for Pike Research will show how microgrids are leading the world today in terms of revenues derived from smart grid renewables integration, but recent market activity has intensified in regards to the concept of a Virtual Power Plant, a smart grid optimization platform that still faces skepticism.

The company that first introduced the term to the world, Siemens, is taking the concept of a VPP to the next level in terms of actual market commercialization.

Given that Germany is phasing out nuclear power, the 23 megawatt (MW) “Regenerative Combined Power Plant” (RCPP) experiment carried enormous implications.  A total of 36 wind, solar, biogas, CHP, and hydropower generators were operated as if a single power plant was supplying 24/7 power to the equivalent of 12,000 households.  Project leader Dr. Kurt Rohrig of Kassel University was awarded the German Climate Protection Prize 2009 for his work on this cutting-edge renewable supply management experiment.  While it generated the equivalent of only 1/10,000 of Germany’s total supply, this successful R&D venture has convinced academics and a partnership featuring Enercon GmbH (whose wind turbine provides a unique suite of grid services), SolarWorld AG (a major manufacturer), and Schmack Biogas AG that the entire country of Germany could be completely powered with a diverse blend of complementary renewable energy resources.

Doubters have pointed out that the RCPP project failed to account for grid congestion challenges that might frustrate this sort of VPP under real market conditions.  That’s why Siemens’ recent announcement to work with German utility RWE Deutschland AG (RWE) to fully commercialize this VPP model is so important.

Siemens’ VPP commercial offering is based on is its Decentralized Energy Management System (DEMS), which is designed to enhance both wholesale and distributed generation operations according to pre-defined economic, environmental, or energy-related priorities.  A variety of combinations of supply- and demand-side resources can be optimized, whether the generator is a large wind farm or an on-site biogas unit.  DEMS was first deployed at a small Austrian paper and pulp mill in 2003.

Siemens was one of the first private companies to explore the concept of VPPs, playing a key role in providing the management system for another pioneering effort in Germany.  Since October 2008, this project has aggregated the capacity of nine different hydroelectric plants ranging in size from 150 kW up to 1.1 MW, with a total VPP capacity of 8.6 MW.  The VPP framework opened up new power marketing channels for these facilities that would not have been viable if these distributed energy resources (DER) were still operating as standalone systems.

Operated by RWE from a centralized control room based in Dortmund, the Siemens/RWE project will grow to 20 MW this year by adding combined heat & power (CHP) units and emergency back-up power systems to the existing hydro portfolio.  It will be expanded to 200 MW by 2015 by further integrating biomass, biogas and wind resources into the network, making this an official commercial offering in Germany, where recent market changes have created fertile ground for VPPs.

Since February of this year, power from this VPP has been sold at the Energy Exchange (EEX) in Leipzig, Germany under new amendment terms of the Renewable Energy Sources Act. This is the first direct marketing of renewable power under this new program. Given the proposed reductions in Feed-In Tariff (FIT) rates, the EEX is being viewed as a key new innovation to help optimize growing renewable energy resources in Germany.

Leave a Reply

Blog Articles

Most Recent

By Date


Clean Transportation, Electric Vehicles, Finance & Investing, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author

{"userID":"","pageName":"Virtual Power Plants Go Commercial","path":"\/blog\/virtual-power-plants-go-commercial","date":"11\/26\/2015"}