Navigant Research Blog

Cautiously, Private Utilities Dip Toes into Microgrid Pool

— December 16, 2014

Lawrence Berkeley National Laboratory statistics show that 80% to 90% of all grid failures begin at the distribution level of electricity service.  While utilities can resolve these issues through a variety of technologies, their historic bias against the concept of intentional islanding – or cutting off certain systems from the wider grid – has precluded them from considering microgrids in the past.

That has changed over the last 3 years.  The extreme storms that pounded the East Coast beginning in 2011 have led the states of Connecticut, Maryland, Massachusetts, New York, and New Jersey to all initiate resiliency programs that promote microgrids as a key element of their strategy.

Unfortunately, the concept of community resiliency or public purpose microgrids often violates utility franchise rules, since power would have to be sent over public rights of ways.  Connecting, for example, a gas station to a high school serving as an emergency shelter and a hospital could get the operator of this impromptu microgrid in trouble.

So, by way of necessity, utilities clearly have to play a role in these kinds of microgrids.  Furthermore, the hype about the utility death spiral is prompting many utilities to examine new regulatory structures and business models to accommodate the growth in third-party distributed energy resources (DER).

The Revolution Will Be Distributed

As a result, Navigant Research has issued a new report, Utility Distribution Microgrids (or UDMs).  While public power UDMs – both grid-tied and remote – are a larger market today and are expected to be in the future than systems deployed by investor-owned utilities (IOUs), the most interesting segment are these latter private systems, due to the regulatory issues they raise and because these large companies tend to move markets.

In conversations with utilities, the messages I’ve heard have changed dramatically.  When I initially researched this topic more than 2 years ago, the biggest concern about microgrids revolved around technology and intentional islanding, a concept that was anathema to utilities whose grid codes were designed to prevent customers from sealing themselves off from the larger distribution grids.  Worker safety, loss of customer load, and stranded investments in centralized generation also came up.

Today, many utilities cite these same issues, but growing numbers realize the DER revolution is picking up momentum and that microgrids that are owned or controlled by utilities could help them fulfill their mission to provide low-cost, reliable power.

Convincing the Regulators

The IOUs exploring microgrids include Arizona Public Service, Consolidated Edison, Duke Energy, NRG Energy, and San Diego Gas & Electric.  The primary challenge for an IOU today in implementing a UDM is justifying a microgrid under traditional rate-based regulation.  How can the utility convince state regulators that investing ratepayer funds into a project that directly benefits a small subset of customers will also benefit the wider customer base?  Even if a valid business case can be made, the typical 3-year rate case state regulatory proceeding business model may retard near-term innovation.

This IOU UDM segment offers the largest potential growth of any UDM segment, since it helps address the need for new technology solutions to address explosive growth in DER.  But it also faces the largest regulatory question marks.

 

New Momentum for Fuel Cell Vehicles

— December 15, 2014

Somewhat unexpectedly, fuel cell cars were in the spotlight in November, with Toyota and Honda each unveiling their fuel cell vehicles (FCVs) in Tokyo, and several FCVs displayed at the Los Angeles Auto Show.   The media responses ranged from skeptical interest to disbelief that FCVs will ever become a reality.  So let’s look at what happened and what it says about where FCVs are going.

The biggest announcement was Toyota’s presentation of the Mirai, a four-seat fuel cell coupe that will be available to Japanese consumers in early 2015 and later in the year in the United States.  Although Hyundai is first to market with a production fuel cell car, Toyota generates the most excitement, mainly because the company is assigned almost magical powers to create a market for new clean technology thanks to its launch of, and continued dominance of, the hybrid vehicle market.  Toyota is clearly swimming against the tide on zero emission technology by going with fuel cells instead of batteries, and the company’s moves attract attention.

5 Minutes or Less

Toyota’s announcements were the most positive of the recent announcements.  I’ve said before that two remaining hurdles for the fuel cell car market come down to cost (of the car) and infrastructure, as the technology has largely been proven.  Toyota demonstrated this with the Mirai, which will have a 300 mile range and will refuel in under 5 minutes.  While Audi has said it is going the plug-in hybrid fuel cell route because a pure fuel cell car would be underpowered at just 130 horsepower (hp), the Mirai will have 153 hp, in line with Toyota’s conventional vehicle line up.  Toyota announced that the sticker price for the Mirai in the United States will be around $57,000.  When tax credits are added in, the price will drop below $50,000.  That’s still a high-priced car, but at this price point, it’s at least competitive with the high end of battery vehicles.

Toyota also said that it will support infrastructure investment in the Northeastern United States.  The company is already investing in hydrogen station deployment in California, through California hydrogen infrastructure startup FirstElement.  While this move can be seen as simply supporting the introduction of zero emission vehicles (ZEVs) in the Northeast states that have adopted the ZEV mandate, it’s the first sign of real progress on U.S. infrastructure build out outside of California.

Full Speed Ahead, Slowly

Honda’s news was more mixed.  Honda unveiled a five-seater fuel cell concept car – a positive step in showing that FCVs won’t have to start small like battery vehicles did.  In addition, Honda joined Toyota in supporting FirstElement in California through a letter of intent to invest $13.8 million.  But the company took a step back by announcing that it would not release its first commercial FCV offering until 2016.  Moreover, Honda’s president, Takanobu Ito, said that his vision was of FCVs in significant numbers on the road in 30 years.

At the Los Angeles Auto Show, other OEMs that have largely stayed out of the fuel cell development path had concept vehicles on display.  The Volkswagen Group showed a hydrogen Golf and a plug-in A7 e-tron for Audi; both are still concepts so this looks more like hedging against future need for a FCV once Toyota, Honda, and Hyundai have tested the waters.

So progress continues on the two major challenges for FCVs, but it continues to be slow.  The price points are the most positive development, and may leave hydrogen infrastructure as the final obstacle for fuel cell cars.

 

With Predictive Navigation, Smart Cars Find Their Own Way

— December 15, 2014

The flood of available data from many sources – traffic updates, GPS, onboard sensors, etc. – will change the ways in which we’ll get around in the coming years.  One tangible manifestation, happening now, is predictive navigation.

From Google to Bosch to Volkswagen, a range of companies in the automotive and technology industries are starting to harness the power data to provide personalized real-time guidance and enhanced vehicle control that could lead to reduced congestion and fuel consumption – and, eventually, to hybrid powertrains that automatically adjust the balance between battery and engine output based on upcoming terrain.

Go This Way

Data about where and when we travel and how fast we go is collected through a combination of built-in systems, such as General Motors’ OnStar and Hyundai’s BlueLink, and brought-in systems, specifically smartphone apps.  Every time a driver launches a navigation app, such as Waze, Google Maps, or TomTom, information about speed and location is transmitted back to the cloud and aggregated with other factors, such as weather forecasts, construction sites, and local events, to determine where backups are occurring or are likely to occur and to provide real-time feedback.   The macro data can be combined with local data about individual driver habits to automatically provide alerts about traffic backups and alternate routes before you turn the key.

Google has provided these predictive alerts for more than 2 years as part of the Google Now functionality on Android phones.  At a recent innovation workshop at its Wolfsburg, Germany headquarters, Volkswagen showed off its own in-car solution to provide alternative route suggestions even when drivers don’t need to use the navigation for common destinations.  Other automakers, including General Motors, have been testing solutions for plug-in electric vehicles, like the Chevrolet Volt, that will automatically preserve electric power for the last portion of a drive home through a residential area or even use up some of the low-charge buffer when the system predicts it will be plugged in soon.

Shortest Is Not Necessarily Most Efficient

Mercedes-Benz is now utilizing topographic map data as an input to the plug-in hybrid powertrain available in its S500 luxury sedan.  When the system detects that the vehicle is approaching the crest of hill, it will automatically shift the power distribution away from the internal combustion engine to the electric motor and then recover energy to the battery on the downhill side.   Ford has been researching eco-routing solutions for both plug-in and traditional vehicles that will calculate routes that use less total energy even though they may cover more total distance.

Everyone that drives in urban areas is well aware of the frustrations of sitting through several cycles of a traffic light while trying to make a left turn.  For the past decade, package delivery company UPS has been using big data and electronic maps to provide its drivers with customized daily routes specifically designed to keep left-turns to a minimum.   By using right turns whenever possible, even if it means going further, UPS had saved more than 10 million gallons of gasoline and reduced carbon emissions by 100,000 metric tons by 2012.

 

CPower Reemerges as a Demand Response Player

— December 15, 2014

In October, I wrote about the announcement that Comverge and Constellation would combine their commercial and industrial demand response (DR) businesses into a standalone entity.  The question was: What would the new company be called?  Would they take one of the existing names?  Combine the two names?  Come up with something new?  Instead, they brought back a familiar brand: CPower, the name of the DR provider that Constellation bought 4 years ago.

But this is not your mother’s CPower, according to Chris Cantone,  the company’s senior vice president of sales and marketing.  The C in CPower carries multiple meanings aside from the lingering brand recognition: the combination of Comverge and Constellation, customer engagement, and curtailment services.  “The market has been excited about the announcement, and our channel partners have been waiting for an independent DR provider,” Cantone told me in a phone interview.  The company is still in a little bit of stealth mode as the behind-the-scenes business combination unfurls, but expect a media splash in the near future.

Divide and Succeed

What value does this new structure bring to the parties involved? Cantone says that the future of DR will entail greater technical requirements, which were hard to fulfill under a larger organization like Constellation.  CPower can be more strategic and proactive on its own, while maintaining a preferred provider relationship with Constellation for its customers.  From Comverge’s perspective, there was a lack of synergy between its utility-focused residential business and its market-focused commercial and industrial business, so it made sense to split them up and allow them to build to their own strengths.

So was Constellation’s purchase of the original CPower 4 years ago a mistake?  No, asserts Cantone.  It was an invaluable experience for the old CPower DR experts to get immersed in the energy markets and learn how DR fits into the bigger picture on the wholesale side with generation and the retail side with customers’ energy procurement strategies.   Additionally, the 2011 deal was the move that set in motion the trend of larger energy entities investing in the DR realm, as Johnson Controls bought Energy Connect, Siemens bought Site Controls, Schneider bought Energy Pool (in Europe), and NRG bought Energy Curtailment Specialists.  Will those combinations survive?  Cantone thinks they will have to deal with the same issues that Constellation did, and we will have to see who can find internal solutions and who sets the DR free.

The Real Threat

Regarding business strategy, the initial intent is to focus on the existing markets in the United States, like PJM, ERCOT, NYISO, ISO-NE, and California.  An expansion into utility programs could be the next growth step, followed by selective entry into the burgeoning international arena.

I contacted executives at EnerNOC to get their take on what looks to be their strongest competition, but they declined to comment .  In the meantime, EnerNOC and CPower may find common ground to combat the potential disruption from the court drama over FERC 745 to remove DR from the wholesale markets, which could affect them more than any amount of friendly competition could.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Blog","path":"\/blog?page=2","date":"12\/19\/2014"}