Navigant Research Blog

Power-to-Gas Comes to North America

— August 14, 2014

Ontario has emerged as hub of clean energy innovation.  The province has rapidly changed its energy mix from coal to renewables in the past 10 years, and Ontario’s latest Long-Term Energy Plan, finalized in 2013, calls for 50 MW of energy storage to be procured in 2014.  Ontario is also home to several innovative storage companies, including Electrovaya, Temporal Power, Hydrostor, and Hydrogenics.

In addition to the 50 MW storage plan – split between 35 MW announced earlier this year and 15 MW slated for the second half of 2014 – Ontario also has a number of storage demonstrations underway.  A 250 kWh/500 kW lithium ion community storage system is being tested by Toronto Hydro, and Temporal Power has two projects: one for wind integration with Hydro One and one for frequency regulation developed by NRStor.  Hydrostor is testing a 4 MWh/1 MW demonstration facility to showcase the firm’s underwater compressed air system, 80 meters underwater.

First the Old World

In addition to batteries, compressed air energy storage, and flywheels, Ontario is adding hydrogen energy storage.  Hydrogenics has announced a 2 MW power-to-gas project in Ontario as a part of the 35 MW procurement.  Power-to-gas systems use surplus electricity and an electrolyzer to generate hydrogen for direct injection into the natural gas grid, or to generate hydrogen and then syngas for direct injection into the natural gas grid.  Ancillary benefits include using the electrolyzer for demand response (including frequency regulation).

In Navigant Research’s recent white paper, The Fuel Cell and Hydrogen Industries: 10 Trends to Watch, one of the trends examined is power-to-gas.  Specifically, the white paper suggests that the power-to-gas concept will be proven in Europe.  In the near term, Navigant Research estimates a $100 million market for power-to-gas in Europe in 2015.  The European power-to-gas market is expected to grow to as much as 665 MW in 2018, representing $850 million in revenue, according to Navigant Research estimates.  This base scenario equates to 4% of the wind capacity to be installed in Europe that same year, with a total installed capacity by 2018 equivalent to 1.9% of the installed capacity of wind from 2014 to 2018.

Although North America has a smaller grid system and the advantage of cheap natural gas – which makes it difficult to make a business case for any alternative technology to gas turbines – there is clearly room for power-to-gas.  Hydrogenics intends to find out how much.

 

Government Accelerates Autonomous Vehicle R&D in the United Kingdom

— August 14, 2014

At the end of July, the British government made a commitment to support the development of self-driving vehicles in the United Kingdom.  Up to three cities will be selected to host trial projects beginning in 2015, and they can apply for a share of a £10 million ($16.8 million) fund established to kick-start new investment in automotive technology.  The press release said that “Ministers have also launched a review to look at current road regulations to establish how the UK can remain at the forefront of driverless car technology and ensure there is an appropriate regime for testing driverless cars in the UK.”

The United Kingdom already has one of the world’s first autonomous vehicle shuttle services, which went into operation in 2011 serving Heathrow Airport’s Terminal 5.  A pilot scheme for fully autonomous pods in Milton Keynes was announced in November 2013.  And the Mobile Robotics Group at Oxford University is building its reputation as an advanced research organization in driverless vehicle technology.   Having the government working on legislation and helping to fund pilot programs is an important step forward in promoting the technology and attracting business to the country.

Unfortunately for the United Kingdom, though, the majority of engineering development work at the major European automakers takes place in Germany and France.  Ford still has an engineering center in Essex, but it’s much smaller than its sibling near Cologne, Germany.  Revised legislation and multiple testing areas in the United Kingdom may well inspire some companies to establish new satellite development centers in the country in the same way that they did in California when Google’s pioneering work began to get headlines a few years ago.  On the other hand, it may also spur governments on the European continent to introduce similar efforts in their countries.

Multiple Routes

One thing to bear in mind with this technology is that there are multiple streams of applications.  In the short term, there is the task of developing a more integrated approach to the individual advanced driver assistance systems functions that are already in production to be able to offer drivers help in well-defined situations such as cruising on a motorway or shuffling along in congested traffic jams.  Mercedes has already begun offering its Intelligent Drive on the new S-Class, and its competitors are not far behind.  Most promise something similar in the next couple of model years.  More fully automated systems that can follow instructions from a navigation system under limited circumstances are expected from about 2020 on, with full automation coming to market after 2025.  The United Kingdom could become a popular place for manufacturers to test such vehicle systems.

The other route is to go directly to small self-driving vehicles that operate at low speed (<25 mph) and with a limited range.  In the early days, these will only operate on roads or paths where conventional vehicles are prohibited.  These projects will have to be initiated by local governments rather than the automakers, and they will provide valuable practical experience of the benefits and challenges that autonomous vehicles can bring to a city or community.

 

Helsinki’s Plan to Make Private Cars Obsolete

— August 12, 2014

Helsinki, Finland, has proposed a strikingly ambitious mobility on demand system that presents the logical extension of current innovations in passenger travel.  The city plans to create a subscriber service that would let users choose from, and pay for, a range of transportation options through their smartphones.  The options will include conventional public transit, carsharing, bikesharing, ferries, and an on-demand minibus service that the city’s transit authority launched in 2013.

The major innovation that makes this work will be an integrated payment system.  This part of the scheme may prove the most complicated to implement, but it is the final piece of the puzzle that makes this scheme truly transformative.  No longer forced to choose between the on-demand capability of private car ownership versus the eco-friendliness of shared transit, Helsinki residents will be able to easily get where they want to go, when they want to get there, without needing a car.

I’ve been using the phrase mobility as a service for this phenomenon, but it looks like the mobile phone companies may have claimed that moniker already.  Whatever the name, the concept is the transportation version of other businesses that are moving from selling a product to selling the service or utility the consumer wants from that product.  Planned obsolescence no longer makes good business sense, and consumers can benefit from constant improvements in technology.  This is most common in information technology (in cloud computing and storage, for instance), but it’s also happening in the energy sector – especially for clean technologies like solar, where leasing programs offer a way to overcome the upfront price premium barrier.

Share, Don’t Buy

Globally, carsharing membership has grown around 28% since 2010, with Europe as the leader in this sector.  Navigant Research’s report, Carsharing Programs, forecasts that global carsharing members will surpass 12 million in 2020.  The rise of on-demand ride services, such as Uber, Lyft, and Sidecar, are also transforming the way city dwellers use taxi services.  Taking on the highly regulated taxi business, these companies face considerable opposition, but at this point, it will be hard to put the genie back into the bottle. Bikesharing and even scooter share services are also spreading.  Today’s young urban dwellers expect to be able to use an array of transportation options to suit an array of needs, at the touch of an app.

Helsinki’s program has the potential to tie into other transportation innovations, such as the rise of electric vehicles (EVs) – more carsharing programs are deploying EVs as a selling point for their service – and autonomous vehicle technology.  Wireless charging would also support schemes like Helsinki’s by ensuring that shared EVs are recharging when parked, rather than relying on the driver to remember to plug in.

Faced with dwindling demand in mature markets like North America and Western Europe, automakers are exploring a range of new services to offset lower demand and to gain a competitive edge.  Farsighted companies will look to begin selling mobility as well as vehicles, changing transportation as much as the IT and energy sectors have changed.

 

An Energy Cure for Hospitals

— August 12, 2014

When it comes to energy reduction in buildings, friendly competition is a strategy that gains a lot of visibility.  In recent blogs, here and here, we’ve discussed how the U.S. Department of Energy has set up competitions for financial institutions and office buildings to become as efficient as possible.  Companies like Opower rely on peer pressure to help communities lower their residential energy bills.  The latest to join in the fray are U.S. hospitals.

The Energy to Care program, run by the American Hospital Association, takes a slightly more advanced route to creating an energy reduction competition between buildings.  The Better Buildings Challenge relies on buildings uploading their ENERGY STAR Portfolio Manager data (either automatically or by hand) into the system and then submitting the results to be a part of the competition.  In Energy to Care, the ENERGY STAR benchmarking data is only the first part of the competition, and the approach used can be adapted as a real building energy management system (BEMS) to aid in ongoing energy savings.

Cost Reductions

The latest Energy to Care program is built on top of Lucid Design’s BuildingOS platform, a BEMS solution that makes integrating data from building energy systems easy and fast.  Lucid Design made its name by engaging through the development of their dashboards, commonly found in universities and government buildings.  BuildingOS offers tools to integrate data from multiple sources, including building automation systems, plug-load monitors, and renewable power generators.  Along with the data integration are visuals and analytics that can aid facility managers and sustainability professionals in their efforts to improve building performance and reach sustainability goals.

Hospitals are in need of this kind of care.  As the second-highest user of energy among all building types in terms of energy intensity and the consumers of 4% of all U.S. energy, hospitals need to leverage these tools to reduce the $8.8 billion a year in energy costs the industry shoulders.  Given the competiveness in the healthcare market, every dollar saved on operations is welcome.

In Energy to Care, the Portfolio Manager data is incorporated in BuildingOS.  Depending on the richness of the data uploaded, the hospital then has access to analytics and graphics that can quickly identify problems associated with energy use in the building.  Hospital energy managers can understand which systems are consuming more power and when power use varies beyond expected levels over the course of a day or week.  The ease of integration of these tools will make energy conservation measures easy to identify and their effectiveness measurable in the long run.  While Lucid Design will benefit from the widespread deployment of its product, the hospitals, and in turn the public, will benefit from reduced costs.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Energy Storage, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Utility Innovations

By Author


{"userID":"","pageName":"Blog","path":"\/blog?page=3","date":"9\/1\/2014"}