Navigant Research Blog

The Humblest, Most Popular EV on the Planet

— July 15, 2014

Neighborhood electric vehicles (NEVs) are a less famous sub-segment of the more familiar class of battery electric vehicles (BEVs), such as the Nissan LEAF.  NEVs are low-speed EVs that are limited to a top speed of 25 mph and to roads that have maximum speed limits of 35 mph; they usually take the form of golf-cart-style vehicles.  Although they get less attention, and advertising, than their larger, faster cousins, NEVs are the most popular type of EVs in use worldwide.  Fleets, including airports, local governments, university campuses, retirement communities, and the military, are the principal users of the technology.  Navigant Research estimates that fleets account for at least 75% of the global NEV marketplace.


 (Source: GEM)

The primary market driver for NEVs is the low production cost and purchase price of the vehicle.  Most NEVs are priced between $8,000 and $14,000, compared to $28,980 for a full-sized BEV like the Nissan LEAF (excluding incentives).  The operating costs of NEVs are also very low, since they use electricity to charge batteries that are typically much smaller than those found in BEVs.

Half a Million Strong

While NEVs are affordable, and particularly convenient in fleet applications, they have their flaws.  Being limited to streets with a maximum speed limit of 35 mph is enough to deter the majority of private consumers, who expect full access to all roads.  Combined with poor performance in snow and cold weather, safety concerns (NEVs usually have less safety equipment than full-speed vehicles), and short battery ranges (25-30 miles per charge), the market for NEVs will remain with niche fleets for the foreseeable future.  Nonetheless, this has proved successful, as significantly more NEVs are in use worldwide than BEVs.  Navigant Research estimates that globally 229,166 light duty BEVs were in use by the end of 2013, less than half the number of NEVs, at 542,134.

As battery prices come down and gasoline prices continue to rise, NEVs will likely increase their market share within fleet applications.  Meanwhile, some companies are also looking into using NEVs for carsharing programs.  In this scenario, the vehicles would be used mostly for connecting travel purposes – from homes to public transit stations, for example, or from stations to offices.  Additionally, NEVs are also considered to be the frontrunners for autonomous vehicle technologies – mainly because low-speed EVs are safer and more suitable than full-sized vehicles for testing these experimental technologies.


Emerging Broadband Technology Offers New Connectivity for Utilities

— July 15, 2014

In the battle for smart grid communications standards, yet another contender is now on the horizon, promising ultra fast data speeds over existing copper wires.  And while telephone companies (telcos) are the primary target market for the G.Fast standard, chipset developer Sckipio believes that the standard will be attractive to utilities for smart grid applications, in addition to broadband connectivity and over-the-top applications like video.

Designed to help telcos cost-effectively compete with cable broadband and very expensive fiber-to-the-home (FTTH) connectivity, G.Fast employs vectoring technology to eliminate interference (cross-talk) between multiple wire pairs in a single copper cable.  The International Telecommunication Union (ITU) instituted the standard in 2010, and recent field trials have shown promising results.

Belgacom has trialed the standard with 3,000 customers and reported a nearly four-fold increase in access speeds over copper.  This makes the technology a reasonable alternative to FTTH, particularly in urban areas with extensive copper infrastructure already in place.  In multi-dwelling units with extensive in-wall phone lines, the use of existing copper lines represents enormous cost-saving, as well as a speed-to-market advantage over running new fiber.

Coming Soon is designed for use in the last-mile – in practice, over distances of less than 250 meters.  This allows fiber to reach as far as the basement of an apartment block, for example, eliminating the need to rewire the whole building and still allowing a notable acceleration in access speeds. requires a short loop (less than 250 meters) and operates at higher frequencies than digital subscriber line transmissions, which also run over existing copper wires, increasing the risk of cross-talk unless the new vectoring technology is employed.

Sckipio says it has seen interest in Europe, North America, and Asia Pacific, and expects to see telco deployment begin in earnest in 2015.

Tel Aviv, Israel-based Sckipio was founded in 2012, and in December 2013 announced a $10 million venture capital round with Gemini Israel Ventures, Genesis Partners, Amiti Capital, and Aviv Ventures.  The company  is building ultra high-speed broadband modem semiconductors.

The standard is still working its way through ITU approval, and a few technical hurdles remain:  Powering the equipment and the unbundling of sub-loops is something that different countries are treating differently. represents a great leap forward for telcos struggling with legacy copper networks.  As a viable alternative for utilities seeking connectivity for smart grid applications, it is likely still a couple of years out.  Given its very high data transfer speeds, however, it may well present a new alternative for utilities needing visibility and control at the grid edge — while also providing telephone companies with an opportunity to ramp up their business in the utility/smart grid vertical.


Li-Fi Turns Light into a Data Stream

— July 13, 2014

Since Harald Haas demonstrated the ability of light-emitting diode (LED) lights to transmit data during a TED Talk in 2011, the promise of Li-Fi (short for light fidelity) has received a lot of attention.  As researchers develop faster and faster communication speeds, the application of the technology to the building space appears both realistic and attractive.  Commercially, General Electric (GE) has demonstrated the viability of the technology through its launch of LED-based communication for retail environments.  Li-Fi could be cheaper and consume less energy than existing wireless communication technologies that rely on radio frequencies (RF).  Smart buildings, which require a dense and flexible control network, present an interesting application for a Li-Fi deployment, particularly with the increased adoption of LED lighting.


Li-Fi seems to be a compelling alternative to the RF technologies that are currently in use today.  First, the RF available to building automation is crowded.  Moreover, as the Internet of Things becomes more pervasive, more and more communication nodes will further saturate the environment.  RF travels through walls.  So, a node in an adjacent room will be competing for detection.  But Li-Fi is impervious to this problem.  Since the range of any individual Li-Fi node extends only to the nearest wall, the communication in one room will never interfere with other communication in a different room.  In other words, the inherent limitations on Li-Fi range are an ideal solution for saturated networks.  Moreover, more than just crowding, interference from microwaves and other devices can be a problem, particularly in medical environments.  Li-Fi is immune to RF interference.

Security is another area of concern for wireless communication.  It’s relatively easy to hack a Wi-Fi network.  Li-Fi, on the other hand, has a shorter range and requires line-of-sight.  As a result, it is inherently more secure.  You have to be within the range of the transmitter and receiver, shifting the threat of IT security to more manageable physical security.

The Bad News

The technology faces some serious technical challenges before widespread adoption, though.  In addition to enhancing security, the line-of-sight requirement also presents challenges.  Though Li-Fi is immune to RF interference, it is susceptible to interference from a more ubiquitous source: the sun.  Receivers placed close to windows could be rendered ineffective.  Additionally, lighting in buildings is typically designed to be unidirectional, from the light source to the space to be illuminated.  But communication networks must be bidirectional to both send and receive data.   In order to create a Li-Fi network, lights would need to be installed to point at each other, which is at odds with their intended functionality.

Despite these drawbacks, Li-Fi could overcome several of the barriers facing wireless.  Though most of the current buzz focuses on visible light communication, using infrared light could solve many of the hurdles.  Windows can be designed to block infrared light but allow visible light to pass, eliminating problems of solar interference.  Infrared also has greater potential throughput of up to 5 to 10 gigabits per second.  Overall, the challenges facing Li-Fi are no greater that the challenges facing RF.  The technology appears to be several years away from successful deployment in building automation.  But it’s coming.


Japan Doubles Down on Fuel Cell Vehicles

— July 13, 2014

Two recent announcements out of Japan have dramatically cut the price that Japanese drivers will pay for a fuel cell car.  Toyota unveiled its completed design for the fuel cell vehicle (FCV) it will put on the market in 2015.  More importantly, the company revealed the price would be around ¥7 million, or $70,000.  This is a big drop from the $100,000 price tag floated, alarmingly, a few years ago.

A day earlier, Japan’s prime minister Shinzo Abe called for subsidies of FCVs beginning next year.  A part of the government’s economic growth strategy, these incentives reflect the hydrogen energy roadmap adopted by Japan’s trade ministry.

As described in my Fuel Cell Vehicles report, I’ve long said that the two impediments to fuel cell cars taking hold in the market are cost and infrastructure.  Automakers like Honda and Daimler have already shown that the technology works, resolving early issues such as cold-start capability.  FCVs will also deliver on the key performance characteristics that make them intriguing, as compared to battery electric vehicles: range and refueling.  The Toyota FCV will have a 420-mile range and refuel in 3 minutes.

The Post-Fukushima Strategy

For longtime fuel cell technology followers, I am stating the obvious.  The potential benefits of fuel cells in transportation have been well-understood for years.  Honda, General Motors (GM), Daimler, Hyundai, and Toyota have all shown they can make cars that meet those performance targets.  Nevertheless, in the U.S. media, the perception persists that fuel cells were made obsolete by the successful introduction of plug-in electric vehicles (PEVs).  In Navigant Research’s recent white paper, The Fuel Cell and Hydrogen Industries: 10 Trends to Watch, I noted that the U.S. media would continue to tie these two technologies together – and would misunderstand the rationale for pursuing them both.  Sure enough, this article asserts that the Japanese government’s goal is to crush Tesla.

Not quite.  The Japanese government’s plan is to promote technologies and fuels that will help ensure the country never has another experience like the Fukushima disaster in 2011.  The Japanese government also wants to grow the economy by supporting domestic industries.

The Market Will Decide

To take a phrase from President Obama, Japan has taken an “all of the above” approach in pursuing these two goals.  Nissan and Toyota have done well in the PEV market.  But fuel cells offer an alternative for consumers who may find that a plug-in car doesn’t meet their driving needs.

Japan has also made a huge commitment to fuel cells that provide residential power.  The country’s residential fuel cell program has supported the deployment of over 42,000 combined heat and power (CHP) fuel cells in Japan.  Manufactured by Toshiba, Panasonic, and Eneos Celltech, these residential units are sold through gas companies like Tokyo Gas.  After Fukushima, when the plant’s backup diesel generators were rendered useless and employees scavenged car batteries to power monitoring equipment, the Japanese government set a requirement that the fuel cells be capable of starting up when the power is off.  While these fuel cells employ a different technology from automotive fuel cells, the CHP program demonstrates both Japan’s commitment to pursuing whatever technology the country believes will support its energy resiliency (utilizing domestic expertise) and its willingness to support that technology in its early market introduction.

Japan has already committed to building 100 hydrogen fueling stations in key metro areas.  The country’s energy companies are partnering in that effort.  Note that the Japanese government is also supporting the automaker deployment of 12,000 charging stations in Japan.  Again, it’s not an either/or prospect for Japan.  The announcement on the FCV subsidies will put the cars at a price point where they might have a chance in the market.  If the infrastructure is in place to make fueling reasonably convenient, then it will be up to consumers to decide whether FCVs will succeed in the market or not.  Success will be measured over many years, not in 18 months.


Blog Articles

Most Recent

By Date


Clean Transportation, Electric Vehicles, Energy Storage, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Utility Innovations

By Author