Navigant Research Blog

Distributed Energy’s Big Data Moment

— April 9, 2014

As my colleague Noah Goldstein explained in a recent blog, the arrival of big data presents a multitude of challenges and opportunities across the cleantech landscape.  Within the context of distributed energy resources (DER), among other things, big data is unlocking huge revenue opportunities around operations and maintenance (O&M) services.

As illustrated by large multinational equipment manufacturers like GE and Caterpillar, big data represents not only a potential key revenue source, but also an important brand differentiator within an increasingly crowded manufacturing marketplace.  Experience shows, however, that capitalizing on this opportunity requires much more than integrating sensors into otherwise dumb machinery on the factory floor.

The recent tragedy of Malaysia Airlines Flight 370 brought international focus to the concept of satellite pings whereby aircraft send maintenance alerts known as ACARS messages.  These types of alerts highlight the degree to which O&M communication systems are already in place in modern machinery.  But Malaysia Airlines reportedly did not subscribe to the level of service that would enable the transmission of key data to Boeing and Rolls Royce in this instance.  Although data may be produced via a complex network of onboard sensors, it is not always collected in the first place.

The collection and utilization of big data is not necessarily as simple as subscribing to a service, however.  Today, the sheer volume of data produced by industrial machinery is among the main challenges facing manufacturers of DER equipment.

A Different Animal

Bill Ruh, vice president and corporate officer of GE Global Software Center, which helped lead GE into the big data age in 2013, describes the Internet of sensors as a very different animal than the Internet used by humans.  While “the Internet is optimized for transactions,” he explains, “in machine-to-machine communications there is a greater need for real time and much larger datasets.”  The amount of data generated by sensor networks on heavy equipment is astounding.  A day’s worth of real-time feeds on Twitter amounts to 80 GB.  According to Ruh, “One sensor on a blade of a gas turbine engine generates 520 GB per day, and you have 20 of them.”

Despite volume-related challenges, this opportunity proved too lucrative for GE to pass up.  Estimating that industrial data will grow at 2 times the rate of any other big data segment within the next 10 years, the company launched a cloud-based data analytics platform in 2013 to benefit major global industries, including energy production and transmission.

Similarly, Caterpillar is one of the latest industrial equipment manufacturers to recognize the value of streaming a torrent of real-time information about the health of products in order to generate new revenue.  Already integrating diagnostic technologies into its nearly 3.5 million pieces of equipment in the field, the company launched an initiative across its extensive dealer network aimed at leveraging big data to drive additional sales and service opportunities.  Currently, the company’s aftermarket business accounts for 25% of its total annual revenue.  As Caterpillar and other companies manufacturing energy technologies have realized, a healthy pipeline of aftermarket sales and service opportunities is of vital importance to market competitiveness in an increasingly competitive manufacturing landscape.

With distributed power capacity expected to increase by 142 GW according to a white paper published by GE in February, the addressable market for aftermarket DER data is rapidly expanding.  Despite these opportunities, data analytics still represents a mostly untapped opportunity for manufacturers of emerging DER technologies.  Allowing manufacturers and installers of everything from solar panels to biogas-fueled generator sets (gensets) to closely monitor hardware performance, better utilization of data has the potential to not only drive aftermarket service offerings, but also accelerate return on investment (ROI) through better optimization and greater efficiency.  And this is a highly valuable differentiator for a class of technologies still scrambling for broad grid parity.

 

Energy Systems Group Acquires Chevron’s Federal ESCO Unit

— April 8, 2014

On April 1, Energy Systems Group (ESG), a major U.S. energy service company (ESCO) based in Newburgh, Indiana and a subsidiary of utility holding company Vectren Corp., announced that it had acquired the federal sector energy services unit of Chevron Energy Solutions, a subsidiary of Chevron USA. The unit, which consists of 48 employees, will not only expand ESG’s projects and footprint but, more importantly, will also allow ESG to play in the U.S. federal government’s indefinite-delivery, indefinite-quantity (IDIQ) ESCO market.

That market was created in February 2009 when the U.S. Department of Energy (DOE) awarded 16 ESCOs with DOE energy savings performance contracts (ESPCs).  These 16 contracts allow the selected ESCOs to provide federal agencies with up to $5 billion of performance contracts each.  The program effectively prequalified the 16 ESCOs to perform energy efficiency services for many of the federal government’s largest facilities.

Narrowing the Competitive Field

Although ESG had been an active player in the federal ESCO market through other avenues prior to the acquisition, such as utility energy services contracts (UESCs – a twist on the traditional ESPC in which federal agencies procure performance contracts through their local utilities), the acquisition allows it to narrow the competitive field for large contracts offered only to ESCOs.  Given that the federal market represents one of the most promising segments in the challenging ESCO market, as Navigant Research wrote in its report, The U.S. Energy Service Company Market, the acquisition positions ESG to benefit from the full scale of the federal ESCO market. “The federal sector is one of our primary targets for growth in the coming years,” said Greg Collins, President of ESG, when I spoke with him.  “This acquisition strengthens our position in delivering on a wider range of federal opportunities.”

Note that other ESCOs have entered the federal market through acquisition.  For example, in 2007, SAIC (now Leidos) acquired BENHAM Companies to gain access to a broader swath of federal building customers (though, this was before the establishment of the IDIQ market).

The federal sector has been a key focus for ESCOs in the United States over the last few years.  While the municipalities, universities, schools, and hospitals (MUSH) market remains a challenge due to the winding down of stimulus funding for municipal performance contracts and concerns about municipal debt, ESCOs have patiently awaited the boost to the market that was initiated by the Better Buildings Initiative, the $2 billion federal performance contracting program announced by President Obama in December 2011.

So far, the program has fallen short of its goal of achieving the $2 billion in contracts by the end of 2013. However, initial signs in 2014 are promising.  Many of the ESCOs I work with are reporting a strong flow of federal requests for proposals (RFPs) and, in the first quarter of 2014, over $230 million of federal IDIQ ESPCs had been awarded. By contrast, in all of 2013, only $362 million was awarded.  In addition, the CEO of Ameresco, George Sakellaris, announced in his company’s 2013 fourth quarter earnings call in early March that federal government ESCO activity was high.  Therefore, 2014 is looking strong for the ESCO market and ESG will be in a much better position to address it in the wake of this acquisition.

 

Cyber Security Community Finally Faces Reality

— April 8, 2014

It’s springtime, so the Navigant Research team is on the road again, speaking at conferences.  This spring’s cyber security conferences have confirmed what I’ve said in this blog for some time now:  the hype is over; the hard work is here to stay.

At SMi’s European Smart Grid Cyber and SCADA Security conference in London, traditionally a showplace for vendors to hawk their wares, there was a decidedly more technical focus this year.  Enel of Italy gave a detailed description on the various projects running in its lab in Pisa, describing how cyber security is integral to each.  It was inspiring to see cyber security integrated at the outset of a project, rather than after a bad audit.  Equally instructive was the description of Enel’s experimental area in Livorno, where many of the company’s new technologies first see public adoption.  Other speakers at this conference continued the technical thread, with topics such as descriptions of self-learning network anomaly detection, and traditional devices such as firewalls and intrusion detection that have been specifically reengineered for control networks.  The unmistakable message that I brought back from London: cyber security vendors have finally accepted that the utility industry is like no other.

Future at Risk

The SANS ICS Cyber Security Summit in Orlando, Florida offered similar but more technical fare.  Adam Crain and Chris Sistrunk described their eponymous vulnerabilities.  They have demonstrated how to disable a utility substation or control console via the serial protocol DNP3.  This is critical because DNP3, which is non-routable, had been previously considered immune to attack.  Another safe assumption bites the dust.  Eric Byres of Tofino Security gave a surprisingly accessible description of deep packet inspection in control networks – a topic normally best saved for researchers and PhDs.  There was also a fascinating Trend Micro report on a control network honeypot deployment, which will be the subject of my next blog.

The unifying theme at both conferences was that protecting control networks is hard work that is never really finished.  Our reports, including Industrial Control Systems Security, have been saying this for 4 years now.  Utility cyber security vendors are finally getting the message.  And to be fair, a few vendors have always understood.

Nonplussed

But challenges remain.  At both conferences, my remarks described the existential threat facing many utilities.  One U.S. utility CEO declares that the grid’s days are numberedThe Economist reports that European utilities have lost half a trillion euros of market cap since 2008.  Reactions to that news were often blank stares or utter confusion – as if the financial health of utilities has nothing to do with their deployment of cyber security.

This too must change.  Security vendors are not competing with each other, so much as they are wrestling with the future of the industry.  Just as understanding settles upon the community, the odds become daunting.

 

U.S. National Parks and Electric Vehicles: A Match Made in Heaven?

— April 8, 2014

The U.S. Clean Cities program and the National Park Service (NPS) recently announced nine new projects to deploy clean vehicles at U.S. national parks. These projects are part of the Clean Cities National Park Initiative launched in 2010. The nine projects mainly feature plug-in electric vehicles (PEVs) and hybrid electric vehicles (HEVs).  Around 21 vehicles will be installed through the funding, including some low-speed electric vehicles (EVs).  The projects also include the installation of EV chargers for park visitors. While any move to make the U.S. parks cleaner is welcome, the relatively modest ambitions of this funding effort reflect the challenge that parks present in the adoption of EV or HEV technology.

Parks have long been an attractive target for greener transportation. This is not only for symbolic reasons, but also for practical reasons. Diesel and gas vehicles are noisy and disruptive. Park vehicles may spend time idling, which is both an emissions problem and a cost concern given the large amount of fuel essentially wasted during idling. These factors would seem to make PEV and HEV technology a good option, but to date, deployments have largely been pilot or demonstration programs and there has yet to be a full-scale shift toward electric drives at the U.S. parks.

A Building Barrier

One major barrier has been the lack of truly commercial vehicles available. As discussed in the Navigant Research report Hybrid and Electric Trucks, most of the traditional truck original equipment manufacturers (OEMs) are offering hybrid versions in the larger trucks classes that are not applicable to the park service. In the truck category, parks would primarily utilize utility trucks, pickup trucks, or vans and trucks outfitted to transport passengers.  These would be vehicles in the Class 2b light duty category or medium duty Classes 3-5, where, until recently, there was more attention focused on producing electrified vehicles for delivery service.

Even though pickup trucks are among the top-selling vehicle in the United States, U.S. OEMs have tailed off production of hybrid pickups and only ever offered demonstration models of plug-in trucks.  However, in the past 18 months, there has been an uptick in companies focused on these class levels and in applications with some applicability to national parks. In January, U.S. startup VIA Trucks announced a major commitment by Canadian company SunCountry to place VIA’s plug-in vans into passenger transport services at Best Western hotels. VIA also develops plug-in electric utility trucks, which will be used at several electric utilities in a pilot project funded in part by the U.S. Department of Energy (DOE). U.S. company Odyne Systems will be delivering 120 utility trucks through the same DOE funding; the plug-in system allows utility workers to avoid engine idling by running equipment off of the battery.

Looking at the larger class of passenger buses that are used in national parks, the biggest push is coming from China’s BYD, which has been targeting parks and transit agencies. While most of the company’s orders are outside of the United States, BYD is making a strong push for the U.S. market. After winning bids in Los Angeles and Long Beach, California, the company began to face major backlash from activists and its U.S. competitors. The Long Beach order was recently canceled, although, evidently, the reason was simply a paperwork glitch. In any case, this environment would make it difficult for the NPS to adopt these buses until BYD becomes more established in the United States through transit deployments like the one in Los Angeles.

While increased vehicle availability will help make electric and hybrid options more feasible for any park looking to convert, the issue of the price premium still looms large. With hybrids costing well over 25% more than conventional vehicles and electric buses often reaching a 100% price premium, cash-strapped public services like the NPS will likely find themselves unable to make the switch even if they want to. Lower-cost options, like propane, continue to see uptake in national parks for this reason. This also explains why the Clean Cities National Park Initiative is still necessary to move these vehicles into U.S. parks.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Energy Management, Energy Storage, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Grid Practice, Smart Transportation Practice, Utility Innovations

By Author


{"userID":"","pageName":"Blog","path":"\/blog?page=3","date":"4\/19\/2014"}