Navigant Research Blog

Building on Big Data

— November 10, 2014

Advanced methods of interpreting large volumes of data have brought innovations in areas such as healthcare/pharmaceuticals, meteorology, marketing, e-commerce, government services, national security, and financial services.  Despite success in other areas, though, big data is only beginning to have an impact on building automation and energy efficiency.  In a 2013 blog, my colleague Bob Gohn discussed big data in the context of buildings.  In this blog, I’ll take a look at some of the solutions emerging in this area and how the buildings industry will be affected.

Continual Correction

Currently, the most common use for big data in buildings is fault detection and predictive maintenance.  Advances in sensor technology have enabled unprecedented views into the status and functionality of building systems such as heating, ventilation, and air conditioning (HVAC).  Sensors are capable of regularly measuring every aspect of the system’s performance by analyzing the data to identify equipment that needs to be replaced or may be about to fail.  Bringing technicians onsite to service equipment can be a major expense for building owners.  This type of data analytics allows a diagnosis to be made before the technician arrives, while also providing information on replacement parts and other relevant items. Data analytics solutions can also build a list of the known problems in a building and derive each piece of equipment’s usage and cost, enabling a quantitative return on investment (ROI)-based assessment of which upgrade or investment should be implemented first.

As building automation and data analytics continue to advance, new applications within the buildings industry are emerging.  Advanced building energy management systems (BEMSs) harness large quantities of data to provide a visualization of the overall energy consumption of a building or portfolio of buildings.  These systems also have the ability to leverage historical data to provide recommendations for how to best reduce consumption.  Next-generation BEMSs have the capability to adjust building system parameters automatically to maximize occupant comfort and energy efficiency.  One example of this type of advanced system is SHIFT Energy’s Intelligent Live Recommissioning (ILR) solution, which provides ongoing re-adjustments.  Another cutting-edge solution is offered by Ecorithm, whose program also includes richly detailed graphics to visualize processed data across a building’s floor plan, identifying areas of waste and recommending corrections.

Designed with Data

Big data is also playing an increasingly important role in the design of resource efficient buildings.  Building information modeling (BIM) programs allow architects to analyze key performance metrics such as natural ventilation, daylighting, solar heat gain, overall energy usage, and even how people will likely interact with spaces.  These programs utilize vast amounts of data from existing buildings to visualize how a conceptual building may perform.  Such analysis can speed the construction of new buildings by leveraging the data-rich plans from previous projects, modified to fit the specific characteristics of the new site.  This also allows designers to cut costs by eliminating the duplication of work from past projects.  Reducing the time and cost required to construct new buildings is an essential factor in addressing rapidly growing urban populations that lack sustainable buildings and infrastructure.

Despite these achievements, the buildings industry is not yet exploiting available data to the extent that other industries are.  Looking forward, advances in building design, construction, and management can leverage big data and advanced analytics to reduce costs and improve efficiency.  As buildings and cities become increasingly automated and digitalized, data analytics will play a growing role in energy efficient buildings.

 

Energy Storage Enjoys a Breakthrough Day

— November 5, 2014

While most Americans were paying attention to election results, news emerged out of California that truly heralds a new era for the energy storage industry.  Southern California Edison (SCE) announced that it will acquire 2,221 MW of new generation assets, of which 250 MW will be energy storage systems.  This is the end result of the lowest-cost resource request for proposal (RFP) that is designed to eventually replace the generation provided by the shuttered San Onofre nuclear power plant.

While the sheer scale of the announcement is staggering (no utility has ever purchased 250 MW of non-pumped hydro energy storage before), the details of the announcement are even more impactful.  SCE was expected to use some of this bid for energy storage (it listed energy storage as a preferred resource on the RFP), and Navigant Research assumed the energy storage part of the purchase would be about 50 MW.  By ordering 5 times that amount of energy storage, SCE is making a very loud statement about how highly it values energy storage as a grid management tool.

The Land Rush Begins

Another important aspect of this move is that it was done on a completely level playing field.  SCE decided to purchase 250 MW of energy storage because it felt it had a higher value than any other generation asset (including natural gas, wind and solar).  That in itself is an extremely important positive note for the energy storage industry.

Even more important for the industry is that SCE’s big vote of confidence for energy storage happened just before the launch of three big RFPs that were designed as part of the energy storage mandate that California is forcing on the big utilities.  By December 1, 2014, all three of the large investor-owned utilities in the state will introduce a total of more than 200 MW of energy storage purchases.  It’s the energy storage industry’s equivalent of the Oklahoma land rush.

Other Big Deals

A couple of other important nuggets regarding the SCE announcement:

  • AES Energy Storage will be building a 100 MW battery plant that will dwarf all existing battery power plants.  Over the last few years, AES Energy Storage has discussed how such a plant might work, but now it will have a chance to actually implement a battery peaking plant.  If this project is successful, it will open up a completely new business model for the energy storage industry that could, in the long run, be the largest segment of the stationary storage market.
  • San Francisco-based startup STEM won an 84 MW contract that will make up hundreds (if not thousands) of distributed battery packs working on the customer side of the meter.  Like many other behind-the-meter energy storage system integrators, STEM has preached the concept of distributed battery packs that, in aggregation, work like a virtual power plant (see Navigant Research’s report, Virtual Power Plants).  STEM will be the first company to implement such an idea at scale in the real world.  If it succeeds, then other players like Coda Energy and GreenCharge Networks will also benefit.

Whatever your politics, for the energy storage industry it is morning in America.

 

A Better Way to Extract Shale Oil

— November 5, 2014

Last month the Colorado Fuel Cell Center (CFCC) at Colorado School of Mines hosted the first public demonstration of IEP Technology’s Geothermic Fuel Cell (GFC).  This innovative technology uses the waste heat produced by fuel cells to convert the kerogen in oil shale into unconventional hydrocarbons onsite.

Using standard fuel cell technology, the GFC flips the application on its head by taking a heat-first, power-second approach.  The system uses solid-oxide fuel cells, manufactured by Delphi Automotive, in tubular modules that can be linked end-to-end to create a long string of fuel cells encased in a steel cylinder.  The long term plan is to insert vertical stacks that are up to 1000 feet long into oil shale formations, spaced 10 to 15 feet apart in a grid pattern.  In this configuration, the fuel cells can generate temperatures of up to 1200 degrees Fahrenheit, which will be used to heat the formation and drive pyrolysis (thermal decomposition of the oil shale).

Giving Shale Oil a Better Name

Currently, shale oil is most commonly extracted ex situ, or offsite.  The oil shale is mined and taken to an above-ground processing facility where it is crushed, heated to temperatures suitable for pyrolysis (500-1,100 °F), and the unconventional hydrocarbons (shale oil and natural gas) are collected, cooled, and refined.  This process is expensive, inefficient, and extremely damaging to the environment, and it has earned shale oil extraction a bad name.

IEP’s technology, on the other hand, performs the processing in situ, or onsite, by applying heat underground and extracting the shale oil and natural gas via wells that sit among the boreholes, leaving the formation intact.  The only byproducts are electricity that can be sold back to the grid, small amounts of clean water, and CO2.  It may seem odd to think of the electricity as a byproduct, but that’s the beauty of IEP’s approach.  If a single 1000 foot stack contains 100 to 300 of Delphi’s 1.5 kW fuel cells, you’re talking 150 kW to 450 kW of baseload power per stack over a projected 5-year lifespan, which is no small thing when you consider the potential revenue.

IEP estimates that the gross capital and operating costs of a GFC installation will be less than $30 per barrel of shale oil when the revenue from the sale of electricity and surplus gases are taken into consideration.  This would give GFCs a significant cost advantage over the competition.  More significantly, IEP’s technology allegedly has an energy return on energy invested (EROEI) of 22:1, which would be a monumental improvement on the current best-in-class EROEI for oil shale, which is closer to 5:1.  The technology seems easy enough to replicate, but IEP has patented their idea, which should give them some protection from competitors.

The Real Cost

However, a couple of questions come to mind.  First, what will the actual installed cost of the systems be?  It could take thousands of fuel cells to develop a single formation.

Second, you have to run a fuel source out to the site, which is probably fairly remote, in order to run the GFC.  You also have to run transmission lines out to the site and build a substation in order to sell power back to the grid, and the fuel cells will only be running at that site for 5 years, so it’s a temporary installation.  How many utilities would be interested in doing that?  These questions must be addressed, and we won’t know how the economics and EROEI shake out until mid-2015, when the GFC is expected to be field-tested.  But this appears to be a very promising technology.

 

Tug of War Over Utility Customers Intensifies

— November 5, 2014

In the last few years residential demand response (DR) has become a thriving market.  Recently, Constellation and Honeywell rolled out a service for all customers in areas that the companies serve designed to encourage consumers to purchase Honeywell thermostats and network them into Constellation’s platform.  Initially introduced only to Startex customers (a Texas subsidiary of Constellation) earlier this year, this service highlights the rising competition for energy customers.

Constellation claims that the program has the potential to shave upwards of $128 annually from customers’ electric bills.  Such services could help utilities reach energy efficiency targets as well as assemble an effective pool for residential DR programs.

There’s only one problem here, and it’s exacerbating tensions between utilities, energy service companies, and regulators.  The problem is that this type of program, also referred to as a hybrid DR model, blurs the lines around who exactly “owns” the customer, as well as who is providing the resource.

The New Disruptors

It seems natural for utilities to be receptive to the continued expansion in resources used to target electric customers for energy efficiency and DR programs.  But many utilities, particularly those in regulated markets, see this as encroaching on an established model in which the utility acts as the face of the service in all cases (regardless of who’s actually providing the service).  As utilities shift from vertical producers and deliverers of kilowatt-hours to being providers of electric services (the Utility 2.0 model), the general consensus is that they want to maintain their statutory ownership of their customer base.  Having already given up so much, it’s likely that utilities will put up a fight in holding onto at least this little bit of status quo and margin.

But that’s not how the many disruptive participants, which have evolved within the energy and utility industry or entered from the broadband and IT spheres, want to play.  They want the customer too, either to expand their business and gain more margin, or because they already own the customer through their primary business (think broadband providers).

Not Letting Go

Looking at it from an economic perspective, some argue that allowing non-regulated service vendors to compete will eventually favor the customer.  Others point out that, while an electric services model does have the characteristics of a highly competitive market, the fact remains that delivering electricity requires substantial and expensive infrastructure, therefore limiting the number of competitors, which could disfavor the end user.  Regulators have been understandably reluctant to institute any sort of rapid overhaul.

I’d argue that regulators and utilities are highly aware that they must change the way they do business in order to facilitate the transition of the energy industry to a lower-carbon state.  But it’s not surprising that they still want to defend their end-user relationships.  Customers like having a single point of contact for their energy services – not separate contacts and bills for delivery and energy efficiency.  Furthermore, as utilities lose revenue associated with dismantled vertical business models, energy efficiency and DR are among the few areas where they have the ability to supplement losses.  As hybrid DR models spread, it’s unlikely that incumbents will let their customer relationships go easily.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Blog","path":"\/blog?page=4","date":"11\/26\/2014"}