Navigant Research Blog

Big Savings from Replacing Diesel with Storage

— July 6, 2014

In my previous blog on diesel and energy storage, I discussed the payback period for energy storage in a remote microgrid.  What is the value of reducing diesel usage in a microgrid, practically speaking?

The table below illustrates the first-year savings of displacing 15% of the diesel generation in microgrids of different sizes using energy storage.  The average installed energy storage cost in this model is $2,112 per kW, and the assumption for the minimum cost of diesel fuel is $1.09 per liter, with the maximum cost in the model averaging $3.27 per liter.  Since the installation of storage is a one-time cost that occurs in the first year, the savings go up after that.

Size Distribution of Deployed Microgrids and First-Year Fuel Savings
at Low and High Diesel Costs: 4Q 2013

ESMG table

(Source: Navigant Research)

According to Navigant Research’s Microgrid Deployment Tracker 2Q14, 231 deployed microgrids have diesel generation capacity.  This means that 38% of microgrids have diesel gensets, and overall, gensets account for 11% of microgrid capacity globally.  Only 40% of the 79 microgrids above 10 MW include diesel generators, and smaller systems are less likely to have diesel generation.  Less than one-third of the microgrids below 500 kW rely at least partially on diesel.

Taking the example of a large microgrid system, because this is where the savings are the greatest, microgrids over 10 MW average 42.7 MW of capacity.

Still Too Costly

Assuming a microgrid does in fact have diesel generation, if a 42 MW microgrid replaced 15% of its total capacity (and assuming at least 15% of that capacity would be displacing diesel gensets) with storage, it could save between $10.9 million and $53.4 million per year after storage costs are recouped.  The total savings for all of the large microgrid systems in Navigant Research’s Microgrid Deployment Tracker would amount to $2.2 billion to $10.8 billion per year in diesel fuel using just 200 MW of energy storage.

So why is storage not more popular in remote microgrids?  Chances are it’s because $2,112 per kW installed is still not competitive in most markets where storage is displacing traditional power generation – even with the benefits of volume manufacturing.  Companies such as Samsung SDI and LG Chem are manufacturing lithium ion cells for the grid at great volume, but it’s still challenging to deliver competitive prices to the customer.  This is because a large portion of costs has nothing to do with the core technology, and instead is related to project management, system design and integration, and installation.  As more companies such as Bosch and Schneider Electric enter the market and bring power electronics and energy management expertise to the storage space, these costs will come down significantly, benefiting the entire supply chain. 

 

Tesla’s Patent Giveaway Paves the EV Freeway

— June 26, 2014

Tesla’s move to open up its patent portfolio is undoubtedly risky, and it could erode Tesla’s competitive advantage.  But the potential rewards outweigh the risks.  The thinking behind Elon Musk’s move is that by allowing the major automakers to use Tesla’s technology, it will help lead to Tesla’s ultimate goal: a comprehensive network of cars, batteries, suppliers, components, and charging stations that utilizes electricity for transportation.  In other words, since Tesla is one of the top electric vehicle (EV) players currently in the market, the company stands to benefit from a vastly expanded network of EV infrastructure based on Tesla’s technology.  The more people that are connected to a network of vehicles relying on electricity, the better it is for Tesla.

Rivals and Collaborators

BMW and Nissan have already expressed interest in collaborating with Tesla on their supercharger technology to potentially create global vehicle charging standards.  BMW has also reportedly considered lending its expertise in carbon fiber technology in exchange for powertrain development and supporting infrastructure.  A partnership between BMW and Tesla could prove to be very powerful, bringing together the highly successful Model S with BMW’s electric city car, the i3, and its soon to be released i8 plug-in hybrid supercar.  Currently, Tesla, BMW, and Nissan account for roughly 80% of the world’s plug-in electric vehicle (PEV) sales.

Car charging companies are also looking to benefit from the technology transfer, with Car Charging Group, Inc. announcing its intention to integrate Tesla’s EV charging technology into its Blink EV charging stations.  Car Charging Group is one of the largest owners, operators, and providers of EV charging services in the United States and is also the owner of the Blink Network, one of the most extensive EV charging networks.

On the Sidelines

While the patent release by Tesla will surely increase collaboration with the major car manufacturers already producing EVs, it’s much less clear that open patents will move the dial on the major automakers that have largely steered clear of EVs in the past.  Toyota, GM, and several other major players are hedging their bets on EVs, and Tesla’s patent release is unlikely to change their position.

Navigant Research’s report, Electric Vehicle Charging Equipment forecasts that cumulative global sales of electric vehicle supply equipment (EVSE) will reach 25 million units by 2022.  Increased collaboration between the major EV players could lead to this figure being achieved ahead of schedule.

Cumulative EVSE Unit Sales by Region, World Markets: 2013-2022

(Source: Navigant Research)

 

What Constitutes “Grid-Wide” Storage?

— June 25, 2014

A recent article in The New York Times made the claim that energy storage technology is “decades away from grid-wide use.”  Reporter Jim Malewitz did not define “grid-wide,” so it is difficult to understand how this term is defined for the purposes of the story.  We can examine that prediction, though, based on various measures.

One measure could be grid generation capacity of the capacity of installed energy storage.  Given that on its own the U.S. grid has about 1,058 GW of total generation capacity, energy storage rightfully appears to be a drop in the bucket – to be precise, 0.07% of grid generation capacity excluding pumped storage and 2.2% including pumped storage.  It’s worth noting, however, that the solar PV industry is considered to be successful and growing, and currently represents about 1.1% of total generation capacity in the United States.  Moreover, the pipeline for energy storage is expanding rapidly.  Approximately 13,000 MW of storage capacity is in the pipeline – 3,000 MW of which is advanced batteries, compressed air, flywheels, and power-to-gas.

Energy Storage Capacity, Installed and Announced, World Markets: 2Q 2014

(Source: Navigant Research)

The First Thousand

A second measure could be the number of markets where storage is present and the variety of technologies in the market.  Navigant Research is currently in the process of updating its Energy Storage Tracker, which tracks 30 energy storage technologies in over 600 projects – some of which include more than one storage system.  Overall, 952 systems in 51 countries are tracked in the database.

Worldwide, there are 2,497 MW of deployed advanced energy storage projects – this excludes pumped storage, a mature technology that accounts for 124 GW installed.  Asia Pacific continues to be the world leader in deployed capacity of energy storage, with 1,184 MW of deployed capacity, which represents 43% of global capacity.  New pumped storage makes up nearly 60% of Asia Pacific’s capacity, followed by sodium-sulfur batteries, with 31% market share.  The market share of advanced lithium ion batteries is growing quickly in Asia Pacific, with 74 MW installed currently.

Demand Flattens

Western Europe (762 MW deployed, 28% of global capacity) is primarily composed of power-to-gas, compressed air, new pumped storage, and molten salt technologies.  North America (725 MW deployed, up from 566 MW in 3Q13) is more evenly divided among technologies, with compressed air, flywheel, lithium ion, thermal, and advanced lead-acid batteries composing a majority of the capacity.  Clearly, a number of markets and technologies are being deployed across grids globally.

One other measure could be the growth of storage relative to a traditional industry.  In 2007, 28 MW of advanced energy storage were installed.  In the subsequent 6 years, 1,300 MW have been installed.  More specifically, installed energy storage grew 28% between 3Q13 and 2Q14.   In contrast, electricity sales have decreased over the past several years in the United States, and the U.S. Energy Information Administration predicts that electric demand growth will average less than 1% per year between 2012 and 2040.

Although energy storage is unlikely to revolutionize the global grid system in the near term, it will certainly begin to scale up rapidly in the next 3 to 5 years.  Perhaps then it will be closer to grid-wide.

 

Tesla Looks to Fuel a Battery Revolution

— June 18, 2014

Elon Musk, CEO of Tesla Motors, stunned the automotive world with his announcement that he was making all his company’s electric vehicle (EV) patents open source.  “Tesla will not initiate patent lawsuits against anyone who, in good faith, wants to use our technology,” he said on his blog.  Musk explained that he decided to do this because the “world would all benefit from a common, rapidly-evolving technology platform.”

Automotive companies are well-known for developing proprietary solutions for almost anything in an effort to get one step ahead of the competition, even for a short time.  But this approach means that often the opportunity to share in the rapid growth of a new technology is lost, and suppliers can miss out on the potential for much higher volumes.  Some have speculated that this change in attitude to patents is a move to create bigger demand for battery cells from Tesla’s planned Gigafactory.

Weight and Range

Conventionally powered vehicles are still the main business of all major automakers, which are continually investing in new ways to make these vehicles more efficient.  One of the current trends is to develop stop-start technology to capture some of the efficiency gains of a full hybrid at a fraction of the cost premium.  Full details on the latest developments are discussed in Navigant Research’s 48 Volt Systems for Stop-Start Vehicles and Micro Hybrids report.

When designing an electric or electrically assisted powertrain, manufacturers have to weigh a number of characteristics for each particular model.  Not all hybrid vehicles and EVs are optimized for economy.  Some use the stored energy to boost power or drive an additional pair of wheels.  Bigger batteries cost more and also add weight and take up space, but they provide greater electric-only range.  Small, light vehicles can travel further per kilowatt-hour of battery capacity than larger, heavier vehicles.  These compromises are difficult to resolve, and battery manufacturers have a role to play.

Step Up

Anticipated sales of battery electric vehicles (BEVs) are projected to be large enough to lead the demand for lithium ion (Li-ion) batteries in the automotive world.  Even though sales numbers of hybrid electric vehicles (HEVs) dwarf those of plug-in hybrid electric vehicles (PHEVs) and BEVs, a much larger battery capacity means that at least 60% of the Li-ion batteries made for automotive use will end up in a BEV over the next couple of years.  That percentage will increase slowly until the end of this decade, after which stop-start vehicles will begin to influence the distribution.  Maybe this move from Tesla will be an incentive for the established carmakers to put more effort into their BEV product range.

Navigant Research expects that the overall market for vehicle Li-ion battery revenue will reach $26 billion by 2023, and that revenue could exceed that if newly emerging 48V micro hybrid technology delivers on its promise of fuel efficiency at a low-cost increment, and a significant number of original equipment manufacturers choose to implement it with Li-ion battery packs.  In addition, the expected steady lowering of per-kilowatt-hour cost will encourage the market if manufacturers pass the savings on to customers.  Full details of the automotive market for Li-ion batteries are covered in Navigant Research’s report, Electric Vehicle Batteries.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Advanced Batteries","path":"\/tag\/advanced-batteries?page=2","date":"10\/22\/2014"}