Navigant Research Blog

Funding R&D for Improved Advanced Batteries

— June 8, 2017

The battery of the future must meet the performance standards of industry stakeholders in the motive and stationary energy storage sectors. Navigant Research anticipates the following criteria will be key in the development of new battery advancements going forward:

  • Improved safety to reduce susceptibility to overheating
  • Abundant raw materials to reduce manufacturing costs
  • Lower $/kilowatt-hour costs on energy-intensive operations of 3-plus-hour durations
  • Lower $/kilowatt costs on power-intensive operations of less than
    1 hour
  • Improved energy density (kilowatt/kilogram or kilowatt/liter)
  • Step change cycle life improvements across both stationary and motive applications

Going forward, next-generation advanced batteries will compete with commercially available, mature advanced battery technology manufactured by large, well-funded multinational conglomerates. To do so, new advanced batteries will need to deliver more kilowatt of power per kilowatt-hour of energy to meet the power and energy needs of vehicles and multiple benefit applications on the grid.

Government and Private Sector Support

To meet the performance criteria mentioned above, government and private sector support of clean energy technology development will remain a critical driver for the commercialization of these advanced batteries. For example, Mission Innovation (MI) is a consortium of 22 countries and the European Union that have agreed to accelerate global clean energy R&D by providing funding for new efforts through countrywide and statewide programs. All member nations vowed to double their R&D spending on clean energy by 2020, including the United States, China, France, and Australia. The second MI Ministerial event, which showcases innovations and debates ideas around new energy technologies, is being held in Beijing during June 2017.

National Commitments to Clean Energy

(Source: Mission Innovation)

ARPA-E

For the US storage industry, Advanced Research Projects Agency-Energy (ARPA-E) has provided dozens of energy storage companies with funding to bring their technologies to market over the past 6 plus years. With the US Department of Energy under fire through the past several months, the future of ARPA-E was unclear, leaving several companies worried. ARPA-E is back up and running and recently received a $15 million boost from this year’s congressional budget instead of being eliminated, as previously proposed by the Trump administration. It is tasked to identify and support revolutionary energy inventions and energy technology advances, which requires constant evolution of its programming focus. This is accomplished by establishing dynamic technical agendas designed to accelerate innovation in high potential areas.

Strategic Advantage

Companies currently working to commercialize new advanced battery technologies that partner with large, well-funded technology and/or manufacturing companies now moving into the energy storage sector will be at a strategic advantage. There have been several examples of this happening in the past year; L3 Technologies’ acquisition of Open Water Power (OWP) is one of the most recent. L3 is a provider of communication, electronic, and sensor systems for government and commercial technologies. Its acquisition of OWP allows L3 to further develop and utilize OWP’s high energy density undersea power generation technologies used in unmanned underwater vehicles (UUVs) and other maritime devices. Navigant Research anticipates that advanced battery companies that show progress toward commercialization like OWP will likely receive investment or will be acquired by large technology manufacturers.

Providing adequate funding and opportunities for companies to develop new energy storage technologies is essential to the long-term evolution of the entire energy industry. Ensuring that we have the best and brightest minds working on our toughest energy storage problems and that venture startups continue to emerge is contingent on reliable funding from both government and the private sector.

 

Beyond Ultra-Fast Charging: Part 2

— June 1, 2017

The potential of automated drive has produced many a report theorizing about the likely impacts of automated drive technologies on the transportation system, the built environment, and more generally, society. Navigant Research is no stranger here; however, our tack is far more conservative than some others. The basic theory most of these reports (including ours) supports is that automation adopted primarily in passenger mobility schemes will drastically reduce transportation costs and increase passenger convenience. This leads to more transportation overall with higher dependency on automated light duty vehicles, but also less use (proportionally) of alternative transportation modes (bike, bus, rail, air, etc.).

The above means that automated vehicles are likely to be highly utilized and therefore automated mobility fleet managers are likely to desire durable vehicles with limited downtime for maintenance or refueling. To be competitive for automated services, battery EVs (BEVs) would have to rely on ultra-fast charging, which would make batteries less durable. Otherwise, they would require more advanced battery systems or significant increases in battery size (to bring charge rate [kW] and battery capacity [kWh] closer to a 1:1 ratio), either of which makes them more expensive.

More Pollution Regulations Are in the Future

At the same time, cities (where automated mobility services are likely to emerge) will probably adopt regulations limiting polluting vehicles within certain geographic boundaries. If they don’t, the ultimate impact of automation is likely more fossil fuel consumption. In such an environment, plug-in hybrids (like those employed by Waymo) may have the upper hand. Alternatively, this could be an opportunity for battery swapping.

Battery swapping notably has a poor record, but many of the barriers to battery swapping as a solution for the passenger BEV market don’t apply with automated mobility fleets. Battery swapping in part failed as a global strategy because it depended on OEMs agreeing on a common battery pack. In a managed fleet with vehicles from a single OEM, this is no longer a problem.

Is Battery Swapping the Answer?

Battery swapping solves reliability concerns, as the charge rate can be managed to optimize life and the battery can be enrolled in revenue generating grid services when off the vehicle. This would also make transportation electrification’s impact on the grid gentler. Additionally, swapping is a faster solution than the fastest wired or wireless charging solution and (as Tesla showcased) faster than liquid or gaseous refueling.

The last advantage is that in fully automated services, range is not as big of an issue as it is when there is a human driver. Theoretically, battery swap packs could be built smaller and added to the vehicle in increments to satisfy certain uses. As an example, instead of having two or more 200-mile battery packs per vehicle, managers could instead employ three or more 100-mile battery packs, which would further reduce overall system costs and risk.

It will be some time before such a solution might be employed. It is a later consideration in the evolution of mobility automation business models. The priority considerations are the development of the automated drive technology itself and the regulations to permit driverless vehicles. It is likely that initial services will leverage conventional refueling and/or recharging infrastructure until reliable business models have been produced. After that development, then competition within mobility services will drive such innovations.

 

Beyond Ultra-Fast Charging: Part 1

— May 31, 2017

Now that the continued decline in battery prices can make battery EVs (BEVs) cheaper to drive than the competition, ultra-fast charging is viewed as the final link to making them mainstream. Given that, the automotive industry is focusing on approximating the time it takes to gas up by rolling out ultra-fast charge networks in North America and Europe.

Tesla’s success with the supercharger network supports the above assumption, but there may be flaws in the ultra-fast charging concept relating to the basics of batteries. The primary component being that charging at a power capacity (measured in kilowatts) higher than the BEV’s battery energy capacity (measured in kilowatt-hours) stresses the battery, reducing its useful capacity over time. Most of the upcoming vehicles capable of accepting an ultra-fast charge will likely have battery capacities between 30 kWh and 80 kWh, whereas upcoming ultra-fast chargers can provide 120 kW-320 kW or more, 4-10 times the battery’s energy capacity.

Reducing Side Effects of Ultra-Fast Charging

Automakers and charging networks can develop systems to diminish the cumulative effects that ultra-fast charging has on batteries (as recently evidenced by Tesla). These solutions are effectively reducing the charging rate under certain technical and ambient environment conditions, limiting the value-add of the fast charging. Such limitations haven’t yet been seriously evidenced because the fastest charging today is only operating at around 2 times the battery capacity. Most charging generally occurs at sub-1X rates.

Only when BEV owners primarily rely on fast charging over slow charging will these limitations become more common and more concerning to potential customers. This is more and more likely given the increasing range of BEVs alongside the development of the ultra-fast charging networks. The advances in BEV and charging technologies mean that BEVs will no longer be limited to single-family homeowners with a reliable charging station in the garage. Indeed, many without residential parking spaces (and therefore charging equipment) may now view the long range BEV an option so long as they can fast charge.

Such ambitions should be tempered through consumer education efforts and/or the development of more modest slow charging options in long-term parking structures. This unfortunately further complicates an already complicated pitch to the mass market. It also threatens consumer consideration of electrification or limits use of the ultra-fast chargers themselves. However, such concern is warranted to avoid negative shifts in consumer perceptions.

Overall, as long as BEVs are primarily purchased by single-family homeowners, this potential problem is probably marginal. However, for the future transportation modes dominated by automated vehicles, it is likely a non-starter.

 

Materials Handling Sector Trends Upward with IoT and Automation

— May 4, 2017

As digitization and automation become mainstream, materials handling vehicles (MHVs) are evolving from passive tools to intelligent, connected pieces of the supply chain. Navigant Research believes that advanced technology options for MHVs are nascent in the materials handling industry and offer significant improvements over traditional options. As the needs of these users grow more complex, it will be important that equipment evolves as seamlessly and efficiently as possible.

The application of Internet of Things (IoT) technology is not limited to automation; it also increasingly enables data integration and using materials handling equipment as data sources. Businesses are turning to data-driven intelligence to guide decisions that improve operational efficiency and protect the bottom line. For MHVs, connected fleets and data-driven operations produce a wealth of small floor-level insights that are transformed into actionable business intelligence. Several companies recognize this and are making steps to ensure predictive analytics play a role in day-to-day operations.

IoT’s Role in Equipment Maintenance

Besides operational efficiency, IoT technology is playing an increasing role in equipment maintenance. Autonomously monitoring the condition of MHV components and generating trouble codes for service technicians can be used to detect failures and/or equipment wear before they affect the vehicle’s performance. For example, forklift manufacturer Linde is working on automating the procedure of troubleshooting fleet issues, ordering spare vehicle parts, and scheduling service engineers while simultaneously informing the customer about the order status. In turn, this makes it easier to streamline orders, identify bottlenecks, and provides transparency to customers.

Advanced Automation – Playing a Role in the Integration of Emerging Electric Powertrain Options

Communication-enabled battery data and chargers allow warehouses to:

  • Reduce or eliminate the battery room footprint by eliminating the need for bulky charging infrastructure
  • Improve forklift uptime by way of opportunity charging
  • Decrease the number of batteries and chargers onsite because of improved battery runtime

Navigant Research’s Advanced Electric Forklift Technologies in North America report states that advanced electric technologies for forklifts may have higher upfront prices. However, they can reduce operating costs with longer runtime and reduced fueling over the lifespan of the fleet.

Battery Advancements

Several battery manufacturers see increased interest in traction technologies nascent to the industry. One of the first companies to do so, Navitas Systems, recently announced it will deploy the Starlifter battery at a Defense Logistics Agency (DLA) in Pennsylvania. Navitas’ program objective is to evaluate the utility, feasibility, maintainability, and cost-effectiveness of replacing lead-acid batteries with fast-charging lithium ion (Li-ion) deep-cycle forklift batteries in DLA Distribution warehouses. The program also hopes to decrease total forklift battery costs of ownership and increase forklift operational readiness and productivity. Companies like Linde and Electrovaya also have recently announced new Li-ion options for forklift batteries as a result of the demands of current warehouse and logistics environments. Much different than the industry 20 years ago, modern warehouses have increased demand for operational efficiency, around-the-clock operations, and more advanced vehicles capable of working in cold storage climates.

Fleet managers look to operational data to improve efficiency and competitiveness. Real-time floor-level alerts are increasingly important so operators can address issues immediately. Customers also expect greater visibility into their lift truck fleet, support equipment, and ongoing asset health. In the future, vehicles will communicate with each other, decision-making will be at the user level, and batteries and charging infrastructure will combine with operator and truck data to inform fleet management across both forklift and powertrain platforms.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Digital Utility Strategies, Electric Vehicles, Energy Technologies, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Transportation Efficiencies, Utility Transformations

By Author


{"userID":"","pageName":"Advanced Battery Innovations","path":"\/tag\/advanced-battery-innovations","date":"12\/15\/2017"}