Navigant Research Blog

Flow Batteries Under Fire: What’s Happening?

— April 5, 2018

There has been an uptick in news surrounding flow batteries over the past year. On the positive front, ESS, Inc. recently raised $13 million in funding from investors and announced that it will deliver two of its systems to chemical manufacturer BASF. On the negative front, Vizn Energy scaled back its business, citing the loss of one its leading investors.

Navigant Research expects flow batteries to be a major competitor to lithium ion (Li-ion) for both front-of-the-meter and behind-the-meter applications in the next several years. In fact, Navigant Research expects them to be the fastest growing electrochemical energy storage device over the next 10 years. However, short-term hurdles still exist. In this blog, I’m discussing some of the major issues.

Cost and Use Case

CAPEX of flow battery systems compared to Li-ion batteries is higher. The cost over the lifetime of the storage asset is heavily dependent on the type of applications the device will serve. We see flow batteries being utilized for long duration energy applications (over 4 hours) as opposed to short duration power applications (less than 4 hours). As their discharge duration is directly correlated with the amount of electrolytes stored in the tank, the levelized cost of energy decreases as the discharge duration increases. At present, we generally see advanced energy storage being deployed for use cases less than 4 hours. Consequently, Li-ion batteries can provide the same services that flow can at a lower CAPEX.

Component and material costs are also an issue. Current commercial flow battery chemistries are limited to vanadium-based and zinc-based chemistries. Their redox pairs yield competitive but lower power densities compared to Li-ion. Exploring different chemistries that yield higher power density and are safer, engineering better separator and electrode materials and architectures to improve chemical conversion, and decreasing other balance-of-system costs are key to improving the competitiveness of flow batteries in the current energy storage market.

Project Timelines

From signing letters of intent to the ribbon cutting of the system, Li-ion batteries are deployed on increasingly shorter timelines relative to other advanced battery technologies. This is because they have been studied more by both the public and private sectors and are well understood. Flow battery systems can be a bit bulkier and require special permitting by players across the value chain. Most customers are not as educated on flow systems compared to Li-ion or lead-acid batteries. Consequently, it is difficult to convince flow battery customers (utilities and C&I customers, mostly) to invest when they can purchase a Li-ion system at a lower CAPEX and have the system up and running faster.

Economies of Scale

Most commercial flow battery vendors outsource component manufacturing to other companies and assemble the final product in house. The demand for flow batteries has not yet boomed, and companies have not found a need to scale up production. As medium- to long-duration markets begin to open for flow batteries as they did for other types, manufacturing synergies will be developed and consequently drive the price down.

How Do Companies Plan for Success?

Going forward, it is increasingly important that flow battery companies continue to educate customers on the benefits of deploying these systems while continuing to improve on the issues outlined above. Being able to back up the 20-year warranty that most commercial flow battery vendors offer will be contingent on these improvements. Because of this, we see the players best positioned to deploy these systems in the short term as large companies that have other business units and resources to support their flow battery business. This way, if business slows or fails, the company will not be set back significantly.

 

Premium Auto Brands Lead the Way to 200+ Mile BEVs

— February 22, 2018

In the race to create long-range battery EVs (BEVs), premium brands are taking the lead. Navigant Research projects over 6 million BEV sales globally by 2026. Because range anxiety is a leading deterrent of consumers looking to purchase an EV, increasing the range of BEVs will be crucial to expanding the market.

Over the past few years, several premium brands have announced they would bring to market BEVs with capabilities of at least 200 miles, with many pushing that number to over 300 miles of range. Apart from Tesla’s Model S and Model X, no premium automaker has released these long-range BEVs. However, 2018 is anticipated to be the year we start to see these new models come to market.

Premium Automaker Electric Promises

The following timeline showcases the increase in announced/expected premium brand long-range BEVs:

Announced Premium Brand 200 + Mile Range BEVs

(Source: Navigant Research)

Audi and Jaguar will likely continue Tesla’s long-range trend in 2018 with the crossover style Jaguar i-Pace and Audi’s SUV e-tron Quattro. The i-Pace is expected to have a range of 220 miles, while the e-tron Quattro will have around 300 miles of range. Audi is also expected to release another all-electric SUV by 2019, along with Aston Martin’s RapidE, Mercedes Benz’s Concept EQ, Porsche’s Mission E, and the Fisker EMotion. Looking to 2020 and beyond, BMW, Tesla, Infinti, and Volvo are all anticipated to release long-range BEVs—in Tesla’s case, the revamped Roadster with 600 miles of range (and a hefty price tag).

Premium brand commitments to electrification comes in more than just the form of single vehicle announcements. Volvo, Aston Martin, and Jaguar Land Rover have announced plans to go all electric or hybrid over the next decade, with Volvo promising this lineup by 2019. In 2017, Porsche installed its first 350 kW charging station at its Berlin office. The ultrafast charger is being developed for the Mission E to allow customers to recharge quickly.

Affordable, Long-Range Vehicles Not Far Behind

More details of these long-range vehicles will be unveiled closer to the release dates, but it is already clear that premium automakers are committing to an electric future. As with many consumer markets, premium and luxury automakers are often early adopters of trends and technologies that are later picked up by economy brands.

While these premium brand long-range BEVs will have a hold of the market for the time being, economy brands like Ford and Hyundai are announcing their own long-range BEVs, which will likely have a substantially lower price tag. Some premium brands, like Tesla, have begun offering less expensive electric models to meet this demand for non-luxury long-range BEVs and to compete in both market segments. If automakers stick to their electric promises and all begin producing EVs, we will continue to reduce emissions from the transportation sector and move toward a greener, cleaner future.

 

Funding R&D for Improved Advanced Batteries

— June 8, 2017

The battery of the future must meet the performance standards of industry stakeholders in the motive and stationary energy storage sectors. Navigant Research anticipates the following criteria will be key in the development of new battery advancements going forward:

  • Improved safety to reduce susceptibility to overheating
  • Abundant raw materials to reduce manufacturing costs
  • Lower $/kilowatt-hour costs on energy-intensive operations of 3-plus-hour durations
  • Lower $/kilowatt costs on power-intensive operations of less than
    1 hour
  • Improved energy density (kilowatt/kilogram or kilowatt/liter)
  • Step change cycle life improvements across both stationary and motive applications

Going forward, next-generation advanced batteries will compete with commercially available, mature advanced battery technology manufactured by large, well-funded multinational conglomerates. To do so, new advanced batteries will need to deliver more kilowatt of power per kilowatt-hour of energy to meet the power and energy needs of vehicles and multiple benefit applications on the grid.

Government and Private Sector Support

To meet the performance criteria mentioned above, government and private sector support of clean energy technology development will remain a critical driver for the commercialization of these advanced batteries. For example, Mission Innovation (MI) is a consortium of 22 countries and the European Union that have agreed to accelerate global clean energy R&D by providing funding for new efforts through countrywide and statewide programs. All member nations vowed to double their R&D spending on clean energy by 2020, including the United States, China, France, and Australia. The second MI Ministerial event, which showcases innovations and debates ideas around new energy technologies, is being held in Beijing during June 2017.

National Commitments to Clean Energy

(Source: Mission Innovation)

ARPA-E

For the US storage industry, Advanced Research Projects Agency-Energy (ARPA-E) has provided dozens of energy storage companies with funding to bring their technologies to market over the past 6 plus years. With the US Department of Energy under fire through the past several months, the future of ARPA-E was unclear, leaving several companies worried. ARPA-E is back up and running and recently received a $15 million boost from this year’s congressional budget instead of being eliminated, as previously proposed by the Trump administration. It is tasked to identify and support revolutionary energy inventions and energy technology advances, which requires constant evolution of its programming focus. This is accomplished by establishing dynamic technical agendas designed to accelerate innovation in high potential areas.

Strategic Advantage

Companies currently working to commercialize new advanced battery technologies that partner with large, well-funded technology and/or manufacturing companies now moving into the energy storage sector will be at a strategic advantage. There have been several examples of this happening in the past year; L3 Technologies’ acquisition of Open Water Power (OWP) is one of the most recent. L3 is a provider of communication, electronic, and sensor systems for government and commercial technologies. Its acquisition of OWP allows L3 to further develop and utilize OWP’s high energy density undersea power generation technologies used in unmanned underwater vehicles (UUVs) and other maritime devices. Navigant Research anticipates that advanced battery companies that show progress toward commercialization like OWP will likely receive investment or will be acquired by large technology manufacturers.

Providing adequate funding and opportunities for companies to develop new energy storage technologies is essential to the long-term evolution of the entire energy industry. Ensuring that we have the best and brightest minds working on our toughest energy storage problems and that venture startups continue to emerge is contingent on reliable funding from both government and the private sector.

 

Beyond Ultra-Fast Charging: Part 2

— June 1, 2017

The potential of automated drive has produced many a report theorizing about the likely impacts of automated drive technologies on the transportation system, the built environment, and more generally, society. Navigant Research is no stranger here; however, our tack is far more conservative than some others. The basic theory most of these reports (including ours) supports is that automation adopted primarily in passenger mobility schemes will drastically reduce transportation costs and increase passenger convenience. This leads to more transportation overall with higher dependency on automated light duty vehicles, but also less use (proportionally) of alternative transportation modes (bike, bus, rail, air, etc.).

The above means that automated vehicles are likely to be highly utilized and therefore automated mobility fleet managers are likely to desire durable vehicles with limited downtime for maintenance or refueling. To be competitive for automated services, battery EVs (BEVs) would have to rely on ultra-fast charging, which would make batteries less durable. Otherwise, they would require more advanced battery systems or significant increases in battery size (to bring charge rate [kW] and battery capacity [kWh] closer to a 1:1 ratio), either of which makes them more expensive.

More Pollution Regulations Are in the Future

At the same time, cities (where automated mobility services are likely to emerge) will probably adopt regulations limiting polluting vehicles within certain geographic boundaries. If they don’t, the ultimate impact of automation is likely more fossil fuel consumption. In such an environment, plug-in hybrids (like those employed by Waymo) may have the upper hand. Alternatively, this could be an opportunity for battery swapping.

Battery swapping notably has a poor record, but many of the barriers to battery swapping as a solution for the passenger BEV market don’t apply with automated mobility fleets. Battery swapping in part failed as a global strategy because it depended on OEMs agreeing on a common battery pack. In a managed fleet with vehicles from a single OEM, this is no longer a problem.

Is Battery Swapping the Answer?

Battery swapping solves reliability concerns, as the charge rate can be managed to optimize life and the battery can be enrolled in revenue generating grid services when off the vehicle. This would also make transportation electrification’s impact on the grid gentler. Additionally, swapping is a faster solution than the fastest wired or wireless charging solution and (as Tesla showcased) faster than liquid or gaseous refueling.

The last advantage is that in fully automated services, range is not as big of an issue as it is when there is a human driver. Theoretically, battery swap packs could be built smaller and added to the vehicle in increments to satisfy certain uses. As an example, instead of having two or more 200-mile battery packs per vehicle, managers could instead employ three or more 100-mile battery packs, which would further reduce overall system costs and risk.

It will be some time before such a solution might be employed. It is a later consideration in the evolution of mobility automation business models. The priority considerations are the development of the automated drive technology itself and the regulations to permit driverless vehicles. It is likely that initial services will leverage conventional refueling and/or recharging infrastructure until reliable business models have been produced. After that development, then competition within mobility services will drive such innovations.

 

Blog Articles

Most Recent

By Date

Tags

Building Innovations, Clean Transportation, Digital Utility Strategies, Electric Vehicles, Energy Technologies, Finance & Investing, Policy & Regulation, Renewable Energy, Transportation Efficiencies, Utility Transformations

By Author


{"userID":"","pageName":"Advanced Battery Innovations","path":"\/tag\/advanced-battery-innovations","date":"6\/18\/2018"}