Navigant Research Blog

Chevy Bolt Could Break Open the EV Market

— February 27, 2015

With GM’s announcement at the Chicago Auto Show that the Chevrolet Bolt battery electric vehicle (BEV) design concept would go into production, one of the biggest surprises of January’s North American International Auto Show became a reality just 1 month later. Although GM officials declined to comment on specific production timing, it’s now certain that the Bolt will be the automaker’s next BEV.

What makes the Bolt so important to GM and the auto industry as a whole is the targeted specification and price point. GM CEO Mary Barra quoted an electric driving range of at least 200 miles for the Bolt and a price of $30,000 after federal tax incentives. According to Navigant Research’s report, Automotive Fuel Efficiency Technologies, non-gasoline and diesel vehicles (including BEVs) are expected to account for less than 4% of light duty vehicle sales in 2024. If GM can execute on its goals, this car could break the market open and become a truly mainstream-acceptable BEV, with a price tag right in the heart of the market and battery capacity that should alleviate virtually all range anxiety.

Room for Five

According to KBB.com, at the end of 2014, the average transaction price of new vehicles in the United States reached $34,367. Recent media reports have indicated that production of the Bolt could start at GM’s Orion assembly plant north of Detroit by the end of 2016 or early 2017. By that time, the Bolt’s projected $38,000 sticker price won’t be much more than the average. Combined with the low operating costs of a BEV, that makes the Bolt a very attractive consumer financial package.

Another potentially critical argument in favor of the Bolt is its form factor. In recent years, American consumers have increasingly been migrating away from cars to crossover utility vehicles (CUV), particularly compact and midsize models such as the Chevrolet Equinox, Honda CR-V, and Ford Escape. With its taller CUV-style body and underfloor battery pack, the Bolt concept appears to offer ample room for five people—something that cannot be legitimately claimed for the Volt.

Rival Rides

The second-generation Nissan LEAF and the Tesla Model 3 are likely to be the primary competitors to the Bolt. With more than 150,000 sales to date, the LEAF is the best-selling plug-in electric vehicle (PEV) of all time. A new model is expected in 2016 with a projected range of about 150 miles. Meanwhile, Tesla CEO Elon Musk has promised the Model 3 by 2017 with a price of $35,000 before incentives and a 200-mile range. But the company’s new $5 billion Gigafactory battery plant, which will supply the Model 3, is not scheduled for completion until the end of 2017. It seems unlikely that the new car will arrive much before then. Tesla also has a history of mixing and matching numbers, claiming range specifications for high-end models along with entry-level prices. The $35,000 Model 3 is likely to deliver significantly less than the 200-mile range claimed by Musk.

GM has a major opportunity with the Bolt to make an impact in the EV market that the Volt has so far failed to achieve. Navigant Research will be watching the development of this car very closely over the next several years.

 

Supercar Launches Reveal Advanced Automaker Thinking

— February 2, 2015

Ford and Honda both announced supercars at this year’s Detroit Auto Show.  It’s worth taking a look at some of the key features in each of these vehicles to gauge where automotive technology is headed.

Ford GT

Originally developed in the mid-1960s, the Ford GT won the 24 Hours of Le Mans race for 4 consecutive years from 1966 through 1969.  At the 2002 Detroit Auto Show, a concept car was shown that captured the look of the original racing car but made it practical to own and drive on regular roads.  Slightly more than 4,000 Ford GTs were produced in model years 2005 and 2006.

Now a new version has been unveiled.  Beginning production in late 2016, the GT will be available in select global markets to celebrate the 50th anniversary of Ford GT race cars placing 1-2-3 at the 1966 24 Hours of Le Mans race.  Although its predecessors all featured V8 engines, the newest version will be fitted with a twin-turbocharged EcoBoost V6, producing more than 600 hp.  Ford is keen to show that its chosen path of downsizing engines for fuel economy still offers plenty of power.

Low weight is an important factor for production vehicles as well as race cars, and the new GT has a carbon fiber passenger cell with integrated seats and aluminum front and rear chassis sub-frames encapsulated in structural carbon fiber body panels.  The exterior shape minimizes drag and optimizes downward forces.  An active rear spoiler is used for control of braking, handling, and stability at speed.  Carbon fiber is a very important material for light vehicle structures, and the new GT will give Ford some practical experience in production.  Ford also announced at the show that it has formed a joint venture with DowAksa (itself a 50:50 joint venture between Dow Chemical and acrylic fiber supplier Aksa) to develop carbon fiber for mass-market vehicle applications.

Acura NSX

The original NSX, developed by Honda (though badged as an Acura in North America) from 1989 through 2005, sold more than 18,000 vehicles over 15 years.  The model has always been a showcase for the latest Honda technology, and the company is now relaunching the NSX as a reminder of its latest technology developments.  Production is slated for summer 2015, with first deliveries before the end of the year.

Like the Ford GT, the NSX features advanced V6 engine technology (Honda has never offered a V8 engine in its consumer vehicles despite developing one for racing use in Indy cars and Formula One).  The new NSX will feature a twin-turbocharged V6 engine with a 9-speed dual clutch transmission and Honda’s Sport Hybrid system, which uses three electric motors to boost power and enhance handling – one at the rear and one at each front wheel.

Managing airflow is again a priority, and Honda engineers have carefully tuned the vents and air intakes for maximum efficiency.  The first-generation vehicle used all-aluminum construction for light weight, but the new model has a space frame design consisting of an internal aluminum frame reinforced by ultra-high strength steel, all anchored by a carbon fiber floor.  Body panels are made of a combination of aluminum and sheet molding composite.  Suspension members are all cast aluminum.

Both of these supercars come from mass-market manufacturers that want to showcase their advanced technology. As my colleague Sam Abuelsamid observes, they manage to demonstrate a combination of high performance and fuel efficiency.  When the time is right, some of the processes, design concepts, components, and materials will make their way into high-volume production.

 

‘Not Invented Here’ is Good for Automakers

— February 1, 2015

Not so many years ago, the auto industry was afflicted by a phenomenon known as “Not Invented Here,” or NIH.  As one of the less desirable relics of the massive vertical integration that provided tremendous economies of scale and profits, NIH also led to technological stagnation.  Fortunately, the drive to reduce fatalities, fuel consumption, and emissions has helped push automakers to look beyond their proprietary engineering labs to adopt and fund innovations from both established suppliers and more recently tiny startups.

“Four decades ago, 90% of the intellectual property [IP] in the auto industry originated from inside the OEMs,” said Dr. David Cole, chairman and co-founder of the AutoHarvest Foundation and an engineering professor at the University of Michigan.  “In those days, suppliers would basically build to print, but today they generate more than half of the IP that goes into new vehicles.”

OK to Fail

As Cole observes, as manufacturers have grappled with integrating state-of-the-art electronics, automated driving systems, and electrified powertrains, they have expanded the scope of their collaboration beyond traditional suppliers that are equally inexperienced in these areas.  In 2005, Ford began a development partnership with Microsoft that led to the SYNC in-vehicle connectivity system.

In 2011, General Motors (GM) and BMW took inspiration from Silicon Valley and established GM Ventures and i Ventures.  Both of these venture capital (VC) funds make relatively modest investments in startup companies that have promising ideas that could enhance future mobility.

For example, GM Ventures put $5 million each into Powermat and Bright Automotive and $4.2 million into Sakti3.  Like all VC investments, a certain percentage are expected to fail, while others will catch on.  Electric van builder Bright went bankrupt in 2012, while GM introduced wireless phone charging mats based on Powermat technology into several vehicle lines in 2014.  Sakti3 is still developing a new type of solid-state battery that shows tremendous promise for reducing the cost and improving the range of future electric vehicles (EVs).  Companies that have received funding from BMW i Ventures include JustPark.com and Coulomb Technologies, the company behind the ChargePoint EV charging network.

Opening Up

Ford doesn’t have a separate venture funding arm, but has made strategic investments in companies like Michigan-based software firm Livio.  Ford bought the startup in 2013 and has incorporated its technology for connecting smartphone apps to the vehicle into its new third-generation SYNC system, scheduled to debut later this year.  In 2013, Ford also contributed the code for its SYNC AppLink system to the open-source GENIVI project, so that any automaker can use the system in its vehicles.  In December 2014, Ford announced a partnership with Techstars to launch a mobility startup incubator in Detroit that will also get funding from Verizon Telematics and Magna International.

From newcomers like Tesla Motors to century-old companies like GM and Ford, everyone has recognized that NIH inhibits innovation, and that no one knows where the next great idea that revolutionizes mobility will come from.

 

New Momentum for Fuel Cell Vehicles

— December 15, 2014

Somewhat unexpectedly, fuel cell cars were in the spotlight in November, with Toyota and Honda each unveiling their fuel cell vehicles (FCVs) in Tokyo and several FCVs displayed at the Los Angeles Auto Show.   The media responses ranged from skeptical interest to disbelief that FCVs will ever become a reality.  So let’s look at what happened and what it says about where FCVs are going.

The biggest announcement was Toyota’s presentation of the Mirai, a four-seat fuel cell coupe that will be available to Japanese consumers in early 2015 and later in the year in the United States.  Although Hyundai is first to market with a production fuel cell car, Toyota generates the most excitement, mainly because the company is assigned almost magical powers to create a market for new clean technology thanks to its launch of, and continued dominance of, the hybrid vehicle market.  Toyota is clearly swimming against the tide on zero emissions technology by going with fuel cells instead of batteries, and the company’s moves attract attention.

5 Minutes or Less

Toyota’s announcements were the most positive of the recent announcements.  I’ve said before that two remaining hurdles for the fuel cell car market come down to cost (of the car) and infrastructure, as the technology has largely been proven.  Toyota demonstrated this with the Mirai, which will have a 300-mile range and will refuel in under 5 minutes.  While Audi has said it is going the plug-in hybrid fuel cell route because a pure fuel cell car would be underpowered at just 130 horsepower (hp), the Mirai will have 153 hp, in line with Toyota’s conventional vehicle lineup.  Toyota announced that the sticker price for the Mirai in the United States will be around $57,000.  When tax credits are added in, the price will drop below $50,000.  That’s still a high-priced car, but at this price point, it’s at least competitive with the high end of battery vehicles.

Toyota also said that it will support infrastructure investment in the northeastern United States.  The company is already investing in hydrogen station deployment in California through California hydrogen infrastructure startup FirstElement.  While this move can be seen as simply supporting the introduction of zero emissions vehicles (ZEVs) in the Northeast states that have adopted the ZEV mandate, it’s the first sign of real progress on U.S. infrastructure buildout outside of California.

Full Speed Ahead, Slowly

Honda’s news was more mixed.  Honda unveiled a five-seater fuel cell concept car – a positive step in showing that FCVs won’t have to start small like battery vehicles did.  In addition, Honda joined Toyota in supporting FirstElement in California through a letter of intent to invest $13.8 million.  But the company took a step back by announcing that it would not release its first commercial FCV offering until 2016.  Moreover, Honda’s president, Takanobu Ito, said that his vision was of FCVs in significant numbers on the road in 30 years.

At the Los Angeles Auto Show, other OEMs that have largely stayed out of the fuel cell development path had concept vehicles on display.  The Volkswagen Group showed a hydrogen Golf and a plug-in A7 e-tron for Audi; both are still concepts, so this looks more like hedging against future need for a FCV once Toyota, Honda, and Hyundai have tested the waters.

So progress continues on the two major challenges for FCVs, but it continues to be slow.  The price points are the most positive development, and may leave hydrogen infrastructure as the final obstacle for fuel cell cars.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Automotive Industry","path":"\/tag\/automotive-industry","date":"3\/27\/2015"}