Navigant Research Blog

After a Century, the Era of the Cadillac V8 Is Over

— April 16, 2015

Twenty years ago, the thought of building a flagship Cadillac sedan without a V8 engine under the hood would have been virtually unthinkable. Nonetheless, in the coming months, the all-new Cadillac CT6 will hit the road to take on the likes of the Mercedes-Benz S-Class and BMW 7 Series with only 4- and 6-cylinder engine options to start with plus diesel and plug-in hybrid electric capability in the future. General Motors (GM) has created what it hopes will be a viable competitor to the segment leaders by harnessing a combination of advanced powertrain technologies and lightweighting to achieve both its performance goals and increasingly stringent fuel efficiency and emissions targets.

Cadillac introduced the first mass-produced V8 engine 101 years ago and, until as recently as 2010, every top of the line Cadillac had a minimum of 8 cylinders under the hood. After first being teased in a television ad run during the 2015 Academy Awards broadcast, the CT6 is debuting at the 2015 New York Auto Show and goes on sale later this year.

Bigger, Better, Not Heavier

In order to help meet the often conflicting goals of performance, driving dynamics, and energy efficiency, Cadillac is incorporating all of the major technologies discussed in Navigant Research’s Automotive Fuel Efficiency Technologies report. Despite its significantly larger size compared to the existing CTS sedan, the CT6 is estimated to weigh about the same 3,600 lbs thanks to extensive use of aluminum in its structure.

A combination of stampings, castings, and extrusions accounts for 64% of the mass of the structure and contributes to an overall reduction of 198 lbs compared to a comparable steel version. GM developed new techniques for laser and spot welding of aluminum in addition to the rivets, screws, and adhesives used extensively by Ford in its new F-150 pickup trucks.

Still High Performance

Starting from a lighter platform enables the engineers to utilize smaller, more efficient engines without sacrificing the performance that customers in this segment expect. At launch, the CT6 will be available with GM’s existing 2.0-liter turbocharged 4-cylinder, an all-new 3.6-liter normally aspirated V6, or a twin-turbocharged 3.0-liter V6 producing 400 horsepower and 400 lbs-ft. of torque. All of the engines feature direct injection and variable valve timing. The V6s will be GM’s first overhead-camshaft engines to feature cylinder deactivation with the ability to disable valve actuation and fuel flow on 2 cylinders under light load conditions.

Each power plant is paired with one of GM’s new 8-speed automatic transmissions and has auto stop-start functionality to shut down the engine when the vehicle comes to a stop to prevent wasting fuel while idling. Cadillac won’t reveal fuel economy numbers for the CT6 until later this year, but the new 3.6-liter V6 is expected to increase fuel economy of the midsize CTS by 9% compared to the 2015 model.

V8 86ed

In addition to these advanced gasoline engines, Cadillac plans to add both diesel and plug-in hybrid electric powertrains to its lineup over the next several years. What about the classic V8 configuration? Those are now limited to a pair of niche but still highly profitable segments, the ultra-high-performance CTS-V sedan and the full-size Escalade SUV. The rest of the lineup will rely on fours, sixes, and electrification from now on. It seems that a century after it began, the era of the mainstream Cadillac V8 engine has drawn to a close.

Update: Shortly after this blog was posted, Cadillac president Johan de Nysschen contacted me to confirm that the brand does in fact have a new high-performance V8 engine in development. While V8s will no longer be the volume powertrain, they will remain part of the future Cadillac lineup.

 

Seeking Fuel Economy, Automakers Slim Down

— April 16, 2015

As automakers scramble to stay on track to meet the 54.5 mpg corporate average fuel economy mandate by 2025, weight reduction is expected to be one of the key pathways to hitting that target. During 2015, General Motors (GM) is launching a wide range of new-generation vehicles—from its subcompact Chevrolet Spark up through its flagship Cadillac CT6 sedan, with virtually every new model boasting significant weight reductions thanks to new computer-aided engineering (CAE) processes.

Lightweighting and Global Platforms

In Navigant Research’s Automotive Fuel Efficiency Technologies report, lightweighting is identified along with engine downsizing and engine stop-start technologies as the main vectors for achieving the most cost-effective improvements in fuel efficiency for high-volume vehicles. GM is pursuing all of these approaches, but its weight reduction efforts are among the most notable. Similar to Ford’s approach of rationalizing its product lineup with common vehicles sold in global markets, GM also made a shift to global platforms in the latter part of the last decade.

Designing global vehicles that must conform to often conflicting crash safety standards led to a first generation of vehicles that often turned out heavier than previous models because they were not properly optimized. For GM, the problem was exacerbated by the financial difficulties it faced during the late 2000s leading up to its 2009 bankruptcy reorganization. The continuous effort to cut costs led to a gutting of engineering resources as staff were either laid off or fled for greener pastures in other industries.

Revving Up

Over the last 5 years, as the auto industry has recovered to prerecession sales levels, the once sparsely populated engineering centers at GM, Chrysler, and Ford are now full again and new design techniques are being applied to the next generation of vehicles. We’ve already seen Ford introduce an all-new aluminum-bodied F-150 pickup truck that cut nearly 700 lbs of weight.

So far in 2015, GM has announced the next-generation Chevrolet Volt and Malibu and the new Cadillac CT6 sedan, with a new Chevrolet Camaro and Cruze still to come. The Volt and Malibu will be nearly 250 lbs and 300 lbs lighter, respectively, while the CT6 is projected to have a base curb weight of about 3,600 lbs. The latter is comparable to the midsize CTS sedan, which is 8 inches shorter and 2 inches narrower. The CT6 is roughly 800 lbs lighter than the Mercedes-Benz S550, 700 lbs less than the current BMW 740i, and 400 lbs less than the similarly sized Cadillac XTS.

Optimization

GM has achieved these impressive reductions through extensive application of multidisciplinary optimization (MDO). Traditionally, the development of various aspects of a vehicle was siloed, with teams responsible for specific aspects of the design. The expanded use of advanced CAE and simulations has enabled greater collaboration early in the design process, leading to more granular optimization. Engineers are able to select a wider variety of materials, including aluminum and high-strength steel alloys, to achieve the best balance of weight, strength, manufacturability, and cost.

Just as Ford was able to maintain or improve the payload and towing capabilities of its trucks while shifting to smaller, more efficient engines, GM is able to improve the performance and driving dynamics of its vehicles despite downsized engines. Chevrolet has projected a 7% improvement in combined fuel economy for the base gasoline engine Malibu to 31 mpg, while the new hybrid version is projected to achieve 47 mpg combined. Over the next 10 years, this pattern of weight reduction is expected to continue as other new materials such as carbon fiber composites are put to use, benefiting both electrified vehicles and those that continue with internal combustion engines.

 

Chevy Bolt Could Break Open the EV Market

— February 27, 2015

With GM’s announcement at the Chicago Auto Show that the Chevrolet Bolt battery electric vehicle (BEV) design concept would go into production, one of the biggest surprises of January’s North American International Auto Show became a reality just 1 month later. Although GM officials declined to comment on specific production timing, it’s now certain that the Bolt will be the automaker’s next BEV.

What makes the Bolt so important to GM and the auto industry as a whole is the targeted specification and price point. GM CEO Mary Barra quoted an electric driving range of at least 200 miles for the Bolt and a price of $30,000 after federal tax incentives. According to Navigant Research’s report, Automotive Fuel Efficiency Technologies, non-gasoline and diesel vehicles (including BEVs) are expected to account for less than 4% of light duty vehicle sales in 2024. If GM can execute on its goals, this car could break the market open and become a truly mainstream-acceptable BEV, with a price tag right in the heart of the market and battery capacity that should alleviate virtually all range anxiety.

Room for Five

According to KBB.com, at the end of 2014, the average transaction price of new vehicles in the United States reached $34,367. Recent media reports have indicated that production of the Bolt could start at GM’s Orion assembly plant north of Detroit by the end of 2016 or early 2017. By that time, the Bolt’s projected $38,000 sticker price won’t be much more than the average. Combined with the low operating costs of a BEV, that makes the Bolt a very attractive consumer financial package.

Another potentially critical argument in favor of the Bolt is its form factor. In recent years, American consumers have increasingly been migrating away from cars to crossover utility vehicles (CUV), particularly compact and midsize models such as the Chevrolet Equinox, Honda CR-V, and Ford Escape. With its taller CUV-style body and underfloor battery pack, the Bolt concept appears to offer ample room for five people—something that cannot be legitimately claimed for the Volt.

Rival Rides

The second-generation Nissan LEAF and the Tesla Model 3 are likely to be the primary competitors to the Bolt. With more than 150,000 sales to date, the LEAF is the best-selling plug-in electric vehicle (PEV) of all time. A new model is expected in 2016 with a projected range of about 150 miles. Meanwhile, Tesla CEO Elon Musk has promised the Model 3 by 2017 with a price of $35,000 before incentives and a 200-mile range. But the company’s new $5 billion Gigafactory battery plant, which will supply the Model 3, is not scheduled for completion until the end of 2017. It seems unlikely that the new car will arrive much before then. Tesla also has a history of mixing and matching numbers, claiming range specifications for high-end models along with entry-level prices. The $35,000 Model 3 is likely to deliver significantly less than the 200-mile range claimed by Musk.

GM has a major opportunity with the Bolt to make an impact in the EV market that the Volt has so far failed to achieve. Navigant Research will be watching the development of this car very closely over the next several years.

 

Supercar Launches Reveal Advanced Automaker Thinking

— February 2, 2015

Ford and Honda both announced supercars at this year’s Detroit Auto Show.  It’s worth taking a look at some of the key features in each of these vehicles to gauge where automotive technology is headed.

Ford GT

Originally developed in the mid-1960s, the Ford GT won the 24 Hours of Le Mans race for 4 consecutive years from 1966 through 1969.  At the 2002 Detroit Auto Show, a concept car was shown that captured the look of the original racing car but made it practical to own and drive on regular roads.  Slightly more than 4,000 Ford GTs were produced in model years 2005 and 2006.

Now a new version has been unveiled.  Beginning production in late 2016, the GT will be available in select global markets to celebrate the 50th anniversary of Ford GT race cars placing 1-2-3 at the 1966 24 Hours of Le Mans race.  Although its predecessors all featured V8 engines, the newest version will be fitted with a twin-turbocharged EcoBoost V6, producing more than 600 hp.  Ford is keen to show that its chosen path of downsizing engines for fuel economy still offers plenty of power.

Low weight is an important factor for production vehicles as well as race cars, and the new GT has a carbon fiber passenger cell with integrated seats and aluminum front and rear chassis sub-frames encapsulated in structural carbon fiber body panels.  The exterior shape minimizes drag and optimizes downward forces.  An active rear spoiler is used for control of braking, handling, and stability at speed.  Carbon fiber is a very important material for light vehicle structures, and the new GT will give Ford some practical experience in production.  Ford also announced at the show that it has formed a joint venture with DowAksa (itself a 50:50 joint venture between Dow Chemical and acrylic fiber supplier Aksa) to develop carbon fiber for mass-market vehicle applications.

Acura NSX

The original NSX, developed by Honda (though badged as an Acura in North America) from 1989 through 2005, sold more than 18,000 vehicles over 15 years.  The model has always been a showcase for the latest Honda technology, and the company is now relaunching the NSX as a reminder of its latest technology developments.  Production is slated for summer 2015, with first deliveries before the end of the year.

Like the Ford GT, the NSX features advanced V6 engine technology (Honda has never offered a V8 engine in its consumer vehicles despite developing one for racing use in Indy cars and Formula One).  The new NSX will feature a twin-turbocharged V6 engine with a 9-speed dual clutch transmission and Honda’s Sport Hybrid system, which uses three electric motors to boost power and enhance handling – one at the rear and one at each front wheel.

Managing airflow is again a priority, and Honda engineers have carefully tuned the vents and air intakes for maximum efficiency.  The first-generation vehicle used all-aluminum construction for light weight, but the new model has a space frame design consisting of an internal aluminum frame reinforced by ultra-high strength steel, all anchored by a carbon fiber floor.  Body panels are made of a combination of aluminum and sheet molding composite.  Suspension members are all cast aluminum.

Both of these supercars come from mass-market manufacturers that want to showcase their advanced technology. As my colleague Sam Abuelsamid observes, they manage to demonstrate a combination of high performance and fuel efficiency.  When the time is right, some of the processes, design concepts, components, and materials will make their way into high-volume production.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Automotive Industry","path":"\/tag\/automotive-industry","date":"5\/29\/2015"}