Navigant Research Blog

Ford Sets a Date for Its Autonomous Vehicle Future

— August 19, 2016

Connected VehiclesOn 16 August, Ford held a press conference to announce its plan to launch a fully autonomous vehicle in 2021. Even though the response at the live event was strangely unenthusiastic, there were a number of points that were important for the future of autonomous vehicles and the automotive industry in general.

The headline news was that in 2021, Ford intends to launch a Level 4 (SAE Standard J3016) fully autonomous vehicle. To clarify the nature of the car, CEO Mark Fields made it clear that it would not have a steering wheel or control pedals, even though last year Ford said it had no plans to sell wheeled pods in which people are merely along for the ride.

The company also said that it would be several years after 2021 before individuals can buy it; it is aimed at car and ridesharing fleet operators. Ford Smart Mobility LLC may become one of the first customers. Ford and GM are already piloting their own systems on shuttles for their employees, as noted in a blog earlier this year by my colleague Sam Abuelsamid.

Skipping a Step

Ford also said it would continue to develop and improve its driver assistance features up to Level 2 (partial automation), but it would not be introducing any vehicles with Level 3 (conditional automation) because company researchers had concluded that there was no safe way to ensure that drivers would remain alert enough to resume control in an emergency after an extended period of automated driving. Ford vehicles in the future will either have a range of assistance features or be driverless.

This is a change from the gradual automation theme that has prevailed in the industry until now, although Ford has been saying for the past year that it doesn’t believe that Level 3 is viable. Solving the Level 3 handover issue has been an important topic at recent technical conferences, and Ford has now confirmed its position. While most other OEMs have been working on Level 3, many are now coming around to the idea that the Level 2 to 4 jump is inevitable.

Although convenience and mobility were the focus of the announcement, Ford also acknowledged that safety is a big part of the reason to promote more driver assistance and eventually fully autonomous vehicles. Providing mobility to those without access today, such as the elderly and infirm, was another of the high-level goals. There are also potential opportunities in local package delivery.

Future Investments

Also included in the press announcement were investments in a series of companies providing key pieces of the future autonomous vehicle:

  • Velodyne: A supplier of lidar sensors
  • SAIPS: An Israel-based computer vision and machine learning company
  • Nirenberg Neuroscience: A machine vision platform for performing navigation and object recognition
  • Civil Maps: A provider of high-resolution 3D mapping capabilities

However, Ford made it clear that it was not interested in simply installing autonomous driving software developed elsewhere. It sees its future as a system integrator and will keep most of the development and integration roles in-house.

When asked about powertrain for this new vehicle, Ford said that it would leverage one of its global platforms, but would not confirm whether it would be all-electric or not. The company noted that it has experience with hybrid drive as well as electric and the powertrain has not yet been chosen.

Ford intends to expand from being primarily a vehicle manufacturer to become a mobility company and has drafted a timeline for this shift. This aligns with Navigant Research’s Transportation Outlook white paper that was published in early 2016, and the timing validates the forecasts in our Autonomous Vehicle reports. It will be interesting to see how other OEMs react.

 

With Investment from Ford, Civil Maps Hopes to Turn Every Car into Mapmaker

— July 21, 2016

Connected VehiclesIn general, an autonomous vehicle could drive itself around based only on its sensing systems without having any access to maps. Unfortunately, while such a vehicle might be able to avoid collisions, this would severely limit the overall capabilities possible with its autonomy. The type of detailed maps with constant updates required to create a robust autonomous mobility on-demand system require substantial resources. This is something that startup Civil Maps is trying to address through crowd-sourced data collection.

The Albany, California-based company recently announced a $6.6 million seed funding round led by Motus Ventures that also includes money from Ford. Civil Maps was founded in 2014 and began development of its crowd-sourced map-building platform in 2015.

Navigational Layers

“There are three layers to the navigational ecosystem for autonomous vehicles: strategic, tactical, and the decision engine,” said Civil Maps co-founder and CEO Sravan Puttagunta. “We are focused on the middle tactical layer that includes a more granular level of detail such as lane configuration, traffic signs, and signals.”

The strategic layer of mapping data includes the metadata about street names and directions of the type found in current navigation systems. This data can be used for overall routing to a destination; however, it is often inadequate for the low-level control that happens in the decision engine that sends commands to the vehicle actuators.

The tactical layer helps the decision engine determine which lane the vehicle should be in to make the turn that the strategic layer has asked for in 200 meters. This layer will know if the intersection has a traffic light, a four-way stop, or a roundabout. As a result of constant updates from vehicles in the field, it will also have awareness of lane closures and detours for construction—or just general road reconfiguration. While traditional mapmakers such as TomTom, Here, and Google (and now even Apple) have begun to collect this sort of data in specific areas, the update frequency is low.

Civil Maps has developed a software layer that automakers can integrate into vehicles that have depth perception sensors in order to turn them into real-time probes. To collect this type of data, a vehicle needs either a stereoscopic camera—like those used by Subaru and Daimler—or a lidar sensor. The company has also built a cloud platform that aggregates and validates the data by cross-checking it from multiple sources.

The raw sensor data would be processed locally in the vehicle and filtered into vector data for uploading to the Civil Maps platform. To make the amount of data processing and transmission manageable, the company has devised a task management system that would see different vehicles assigned to gather lane markings, traffic signals, and more.

Ford Fusion Autonomous Prototype Testing at Mcity

autonomous-fusion-mcity-39A0181_HR

 (Source: Ford Motor Company)

OEMs Key to Developing Revenue

Civil Maps is still working out the details of its revenue model, but Puttagunta acknowledged that it will likely have two components. In the future, when autonomous vehicles are deployed using Civil Maps data, OEMs may pay a license fee per vehicle for the base data set. But before that happens, there will be a credit system for data contributions and use. For every set of data uploaded from a vehicle, the OEM would earn credits that would be spent when updated data is withdrawn and sent to cars.

Navigant Research’s 2015 Autonomous Vehicles report projects that more than 4 million autonomous-capable vehicles could be sold by 2025, and these will all need detailed 3D maps. If automakers adopt the Civil Maps approach in the next few years, they could help build those maps without operating expensive fleets of street-view style vehicles.

 

Automakers Need to Start Being More Candid About the Limits of Autonomous Technology

— July 1, 2016

Connected VehiclesWhen was the last time you ever actually read an end-user license agreement or terms of service before clicking “Accept” to install a piece of software or join the latest social network? Odds are that unless you are a lawyer, the answer is never. The technology companies that make these products would probably like it to stay that way. However, in the world of the self-driving car, that is not an acceptable policy. The tragic death of a Tesla Model S driver in Florida highlights the need for all automakers to be more open and transparent about the limitations of autonomous technology.

Revolutionary (When It Works)

It seems that barely a day goes by when we don’t get a breathless press release from an automaker, supplier, technology company, or Silicon Valley startup about the amazing progress that they are making on self-driving technology. You can already go out today and purchase vehicles from a number of brands that promise at least partial autonomous capability, and full autonomy is being targeted by the end of this decade. While Tesla Autopilot, Volvo Pilot Assist, and other similar systems seem truly magical when they work as advertised, there are far more scenarios where these systems do not function at all.

Unfortunately, we have not seen Tesla CEO Elon Musk stand on a stage and tell people not to use Autopilot in the city, on curving rural roads, or in the snow. GM CEO Mary Barra stood on the stage at the 2014 ITS World Congress in Detroit and promised a Cadillac with hands-off Super Cruise capability in 2016. I’ve experienced prototype systems from Toyota and Honda and driven production systems from Tesla and Volvo, and when they work, they are incredibly impressive.

I am an engineer by training and technology analyst by trade, and I have a much greater understanding than the average consumer about how these systems work. As a result, I can never truly relax with these systems because I’m always on the lookout for the failure mode, and they are numerous. Unless very explicitly told, the average consumer will be so excited by the prospect of turning over control to a computer that they will not pay any attention to the warnings that Autopilot is very much in beta before enabling it. Volvo doesn’t even give that warning before allowing Pilot Assist to be engaged.

Mainstream Customers

Tesla is fortunate that many of its existing customers are early adopters that expect technology to be imperfect, although most of them probably don’t expect to be at risk of injury when it fails. When the Model 3 arrives and mainstream consumers try Autopilot and find its limitations, they aren’t likely to be as forgiving, and the same is true for every other automaker offering autonomous features. Navigant Research’s Autonomous Vehicles report projects more than 4 million autonomous-capable vehicles to be sold by 2025. Those customers need to know what the systems can do—and, more importantly, what they cannot.

We don’t yet know all the details of what happened in the tragic crash in Florida. Similar accidents where one vehicle crosses a highway divider happen all the time, and fatalities occur when humans are in control. What we do know is that we are far from a time when we can just sit back and relax and let the computer do the driving. Every company involved in this space needs to be far more upfront with consumers about this technology can do or risk poisoning the market.

 

Autonomous Vehicles and Keeping Pets Safe on the Road

— July 1, 2016

Electric Vehicle 2With the Fourth of July rapidly approaching, Americans everywhere are revisiting their version of the American Dream. The traditional American Dream can be quantified: 2.5 children, one house, two green lawns, one cat, one dog, and one to two cars.

Recent developments have made this dream change somewhat. The tiny house movement has driven some household footprints to 500 square feet and smaller. Lawns go unwatered thanks to drought and water conservation efforts. Cars are increasingly technologically advanced—everything from alternative powertrains and carsharing programs to autonomous driving. In fact, Navigant Research forecasts that carsharing programs will grow sixfold by 2024. It seems the only things that haven’t changed are the nuclear family’s propensity toward having pets. So how does Fido fit into the New American Dream? It turns out that the answer may be in the increased protective services of self-driving cars.

Autonomous vehicles are rapidly becoming a divisive subject. There are people who are absolutely gung-ho about the idea, promising to never touch a gas pedal again as soon as the vehicles are available to the public. On the other side are those who would never entrust something as difficult and variable as driving to the mind of a machine. However, there is no denying the fact that human drivers are a massive risk on the road. Of the 20 accidents in which Google cars have been involved, only one was caused by the autonomous vehicle. The rest? All caused by the carelessness of distracted and slow-reacting human drivers. Human-caused car accidents are a threat to lives, human and animal alike.

Keeping People (and Pets) Safe

In 2014, Tesla Motors posted a parody article for April Fool’s day, claiming that pet-driven cars are safer than autonomous vehicles. The best-driving pet was voted to be the goldfish. This was due to their calm, meticulous nature, and having no propensity to drive off cliffs (as cats do) or drive the car after squirrels (credit: dogs). Computers are in many ways like goldfish in these capacities: they are inherently unbiased except as designed in their programming, require minimum feeding, and display a calm and calculating decision-making ability. Fortunately, computers also have a memory longer than 30 seconds.

It is ridiculous to think of vehicles being driven by our furry and scaly companions rather than by complex algorithms, because self-driving cars do present many potential benefits for our many-legged friends. By reducing the number of all types of accidents and collisions, the number of pet injuries and deaths due to cars is also greatly reduced. In the United States, around 1.2 million dogs and 5.4 million cats are killed on the roads every year. In addition, distracted driving was the cause of 5,474 human deaths and 448,000 injuries in 2009. It is difficult to say precisely how many of these distractions were due to pets in the car, but pets are counted among other distractions to drivers, a category encompassing disruptive passengers, misbehaving children, and drivers that put on makeup or read in the car. While a human or their furry companion can become distracted from the road, autonomous vehicles are solely focused on the task of safely navigating the roads and avoiding collisions with vehicles, people, and other mammals.

The American Dream has certainly changed, but autonomous vehicles are doing their part to protect us and our animal companions. Aside from shooting off fireworks while grilling hamburgers on the hood, there is nothing a vehicle could do to be more American.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Finance & Investing, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Transportation Program, Transportation Efficiencies, Utility Innovations

By Author


{"userID":"","pageName":"Autonomous Vehicles","path":"\/tag\/autonomous-vehicles","date":"8\/24\/2016"}