Navigant Research Blog

Lufthansa Leads Biofuels Hunt

— May 6, 2014

Lufthansa announced last month that it has teamed up with U.S.-based Gevo to research the blending of alcohol-to-jet (ATJ) fuel with conventional kerosene for use in commercial flights.  While it’s not surprising that ATJ will be on the fast track for testing and ASTM approval for use in commercial operations, Lufthansa’s support of the ATJ biojet pathway demonstrates that it’s conducting an intensive search for a viable advanced biofuels conversion pathway.

Lufthansa is among the leading airlines that have sought partnerships with emerging companies at the vanguard of biofuels innovation.  On paper, the German carrier accounts for more than 40% of the biofuels purchased by commercial airlines since 2008.  It was the first commercial carrier to operate biofuels-powered flights, launching an initiative to fly more than 1,000 commercial flights between Hamburg and Frankfurt in 2011 powered by biofuels derived from jatropha, camelina, and animal fats.

Succumbed

In some respects, Lufthansa has become the canary in the aviation biofuels coal mine.  It abandoned the Hamburg-Frankfurt route in 2011, citing difficulty finding a sufficient volume of biofuels.  The move presaged a dramatic decline from 31,000 biofuels miles flown in 2012 by commercial carriers to just 3,000 in 2013.

Commercial Airline Biofuels Miles Flown by Flight Type, World Markets: 2008-2013

 

(Source: Navigant Research)

Among the industries actively seeking alternative liquid biofuels, the aviation sector has been one of the most aggressive in pursuing its sustainability goals.  While laudable, this significantly narrows the potential feedstock pool for an industry anxious to lower operating costs, hedge against future oil price spikes, and improve its carbon footprint.  The drop-off in biofuels miles flown reflects the challenge of pairing a low-cost conversion technology with an abundant and sustainable feedstock.

At least 75% of global biofuels production today is derived from just two feedstocks: cornstarch in the United States and sugarcane in Brazil.  The remaining share is produced from other food-based feedstocks like soy, canola, palm, and coarse grains converted to first-generation ethanol and biodiesel.  Despite a relative abundance, both ethanol and biodiesel lack key performance attributes of kerosene-based jet fuel, making them nonstarters for use in jet engines.

Just two fuel pathways are approved for commercial use in the aviation industry today.  The first, FT-SPK, is a gasification and catalytic process (Fischer-Tropsch) that was put into use by the Nazis during World War II and in South Africa under apartheid.  The second, HEFA (or Bio-SPK), involves hydrotreating oils derived from oil-bearing plants, animal fats, and used cooking grease.  This latter pathway has supplied nearly 100% of the fuel burned in the nearly 600,000 miles of biofuels-fueled flights that have occurred since 2008.

A disproportionate share of the biofuels consumed by airlines during this period has been produced from used cooking grease, a feedstock typically discarded as waste.  While produced in abundance in urban areas, the relative volume of used cooking grease represents just a drop in the bucket compared to the nearly 90 billion gallons of kerosene-based jet fuel consumed annually by commercial airlines and militaries around the world.  It was never the silver bullet envisioned by the aviation industry for offsetting petroleum use.

The Search Continues

While many commercial carriers remained focused on participating in demonstration flights and establishing commercial routes, Lufthansa refocused its efforts on scouring the globe for technologies with the potential to operate at an industrial scale.

In 2012, the airline inked a deal with Australia-based Algae.Tec to build a large facility in Europe based on a modular design that uses shipping containers.  Although the algae industry remains an outlier in the crowded advanced biofuels technology landscape, along the algae frontier, Algae.Tec is an even greater outlier with a potentially game-changing platform.

Lufthansa’s recent deal with Gevo to pursue ATJ offers the airline another potential pathway to industrial-scale biojet production based on fermentation.  With the lion’s share of global biorefinery infrastructure based on fermentation platforms, Gevo is pursuing a capital-light approach based on the retrofitting of existing conventional ethanol refineries.  Assuming ASTM approval of ATJ, Navigant Research’s recent Aviation and Marine Biofuels report projects that 180 million gallons of ATJ will be produced globally by 2024.

 

Cellulosic Biofuels Not Dead

— April 4, 2014

Risk_webCellulosic biofuels have multiple advantages over conventional biofuels like ethanol and biodiesel.  Primary among the advantages is that the fuel’s feedstock is agriculture waste, which means it avoids controversial topics like the food versus fuel debate and direct or indirect land use change concerns.  Despite these advantages, hope for cellulosic biofuels has eroded because multiple companies have failed to produce the fuel at scale and a competitive price point.

The many failures forced the U.S. Environmental Protection Agency (EPA) to cut the annual volumetric blending requirement for cellulosic biofuels mandated by the Renewable Fuel Standard (RFS) to levels ranging from 6 million gallons to 9 million gallons between 2010 and 2013.  For 2014, the EPA has proposed cutting the original volume requirement for cellulosic from 1.75 billion gallons to 17 million gallons.  Additionally, KiOR, the company closest to producing cellulosic biofuels at scale, has run into financial stumbling blocks.  This situation is leading some to question whether cellulosic biofuels will ever take off.  But while the industry has certainly appeared to be on the brink, investors do still have hope, as demonstrated by Cool Planet’s successful closing of $100 million Series D financing at the end of last month.

Saving Cellulosic Biofuels One Plant at a Time

Cool Planet has often been described as similar to KiOR, as the two companies take cellulosic biomass and convert it to hydrocarbons chemically identical to petroleum-based fuels.  The two companies are, however, also “dramatically different,” as described in interview with Cool Planet’s CFO Barry Rowan.  The most significant differences are related to Cool Planet’s novel approach to production plant development, the production process, and the development of the company’s propriety biochar, CoolTerra.

Rather than focusing on one or more major production facilities, Cool Planet will develop numerous small-scale (10 million gallons per year) plants.  This approach has multiple advantages.  First, it reduces risk to investors, as each small capacity plant is significantly less costly than one giant facility.  Second, the development costs of each new plant are reduced and production margins improved since Cool Planet is able to innovate on lessons learned from past plant developments.  Third, it allows Cool Planet to bring the plant to the biomass rather than the biomass to the plant.  This reduces the transport costs for the cellulosic biomass and insulates Cool Planet against feedstock shortages.  Rowan notes that the capacity of each plant is limited to a fraction of a region’s cellulosic resources.

Cool Planet can use a variety of cellulosic feedstocks, which the company exposes to high temperature and pressure to create a biovapor.  The biovapor is then converted to a high octane gasoline blend stock.  In contrast, KiOR’s process produces a biocrude oil, which is then refined into gasoline and diesel products.  When put through a proprietary catalytic column, the biovapor created by Cool Planet’s process produces the biofuels and a residual biochar – both of which have markets.

The biochar produced from the biofuels development is then treated by Cool Planet to create the company’s proprietary product, CoolTerra.  According to the company, which has five PhDs working on this product, trial results show improved crop yields and growth rates, as well as reduced water and fertilizer input requirements.  The resulting impact is a fuel that is carbon-negative; any carbon produced is sequestered in the CoolTerra, which will be used to produce carbon-absorbing plants and thus reduce atmospheric carbon concentrations.

Development of Cool Planet’s first 10 million gallon facility located in the Port of Alexandria, Louisiana is underway; the plant should be operating by 2015.  The development of two other plants in Louisiana is scheduled to follow in 2015 and 2016.  Rowan estimates Cool Planet can be profitable at oil prices of $50 per barrel, well below today’s rate.  Real world tests of Cool Planet’s business model will demonstrate its viability.  If anything can be gleaned from the recent struggles and successes of KiOR and Cool Planet, it’s that the industry is not dead; rather, it is simply taking longer to adapt to technological and logistical problems than expected.  And it’s clear investors believe Cool Planet may have a winning approach.

 

Audi’s Strategy to Enable Carbon-Neutral Driving

— February 16, 2014

Audi recently announced that results from testing of the company’s synthetic liquid fuels, or e-fuels, indicate that e-fuels perform significantly better than conventional fuel counterparts in conventional vehicle internal combustion engines.  The company subsequently announced that it will broaden its e-fuels initiative through its partnership with French biofuels company Global Bioenergies.  Audi’s e-fuels initiative is unique, as no other major automaker has pursued the development or distribution of gaseous or liquid fuels – carbon-neutral or not – for the transportation market.

Audi plans to produce e-gas and, through a partnership with Joule, e-diesel and e-ethanol.  The company also intends to produce e-gasoline through a partnership with Global Bioenergies.  The purpose of this initiative is to provide drivers of Audi vehicles with carbon-neutral driving options as a selling point for its gasoline, diesel, and/or compressed natural gas (CNG)-powered vehicles.  However, Audi drivers worldwide may be physically unable to fill up with the carbon-neutral synthetic fuels developed by Audi due to a lack of refueling stations.  The automaker will enable Audi drivers to indirectly contribute to increased amounts of carbon-neutral synthetic fuels into the overall fuel pool through what amounts to offsets.

Powered by E-Gas

An example of how Audi’s strategy works is its production of e-gas, the e-fuel closest to market.  E-gas is produced from the electrolysis of water, which produces hydrogen, which is then combined with waste CO2, producing methane as a synthetic natural gas substitute.  The e-gas production facility is powered by wind turbines and uses concentrated waste CO2 from a nearby biogas plant.  The production and consumption of e-gas using this system generates no new carbon emissions.  The e-gas is then piped into the greater natural gas network at the e-gas production facility in Werlte, Germany.

Early adopters of Audi’s forthcoming CNG- and gasoline-powered vehicle, the A3 G-Tron, will be able to buy quotas of e-gas upon purchasing the car.  This allows them, through an accounting process, to say their Audi is powered by the carbon-neutral e-gas produced at the plant.  This offset option will only be available to European customers though, as light duty CNG vehicles have failed to catch on outside of Europe primarily due to a scarcity of CNG refueling stations.

Outside of Europe, similar programs are expected to emerge alongside Audi’s development of liquid e-fuels.  The end markets for these fuels are significantly greater than those for e-gas, since the vast majority of vehicles worldwide are powered by liquid fuels.  However, these e-fuels are still far from reaching the market.  Actual implementation of Audi’s carbon-neutral strategy outside of Europe is therefore limited in the near term, barring a significant increase in CNG infrastructure options.   But the promise of Audi’s and its partners’ work on liquid e-fuels may significantly speed development and adoption of carbon-neutral fueling options, holding  significant implications for the vast majority of vehicles in use powered by conventional petroleum-based liquid fuels.

 

Boeing Bets on Green Diesel

— January 31, 2014

The race for aviation biofuels has accelerated in the last couple of years.  More than 1,500 individual flights at least partially powered by biofuels have occurred since Virgin Atlantic powered the first commercial jumbo jet in 2008 with a blend of conventional jet fuel and biofuel derived from babassu and coconut oil.  More than 30 commercial carriers have flown with a blend of biofuels over this period.  Most recently, Boeing announced it would pursue ASTM certification for use of renewable green diesel for use in commercial aviation.

Despite aviation biofuels’ broad appeal among key commercial and military stakeholders, limited production and high costs have remained challenging barriers to the 3% to 6% share of global jet fuel consumption that the International Air Transport Association (IATA) believes is achievable by 2020.

Derived from diverse resources like algae, camelina, jatropha, and used cooking oil, the current pool of aviation biofuels is shallow due in part to a lack of production capacity – at least as measured against prevailing expectations just half a decade ago.  This is why Boeing’s recent announcement to pursue green diesel certification could change the game.  For the aviation industry, certification would enable green diesel to be integrated into existing supply chains at a cost that is competitive with petroleum-based jet fuel.

Plenty of Capacity

More chemically similar to fossil-based diesel than conventional biodiesel, green (or renewable) diesel’s advantage over incumbent biofuels is its compatibility with existing infrastructure.  This means that it can be dropped into existing pipelines, storage tanks, and most importantly, existing engine hardware.  This avoids the substantial costs associated with building out additional infrastructure, which conventional biodiesel and ethanol require – a bottleneck that has stymied conventional biofuels’ penetration into the global fuels supply chain.

Another advantage of green diesel relative to other advanced biofuels is availability.  In 2013, though green diesel contributed to just 2.7% of the total gallons of biofuels produced worldwide, it made up more than 95% of the advanced biofuels pool.  A recent International Energy Agency (IEA) report called green diesel the most successful advanced biofuels pathway with respect to scaling up production capacity.  According to estimates compiled for Navigant Research’s Industrial Biorefineries report, there is currently more than 900 million gallons of green diesel production capacity deployed across the United States, Europe, and Singapore.

Just two pathways – Bio-SPK and FT-SPK – have achieved ASTM certification for use as jet fuel.  At their current stage of development, both pathways have proven to be prohibitively expensive to use on a commercial basis.  Alaska Air and Horizon paid $17 per gallon in 2011; the U.S. Navy, meanwhile, has paid between $20 and $65 per gallon for advanced biofuels used in various non-combat operations.  While it is important to note that these prices are for relatively small quantities used primarily for testing, with green diesel’s wholesale cost in the range of $3 per gallon, it is currently available at price parity with petroleum-based jet fuel.  Jet-A wholesale costs are currently just under $3 per gallon.

Flight Path

Although ASTM approval for green diesel would be a boon for advanced biofuels and the aviation industry in the near term, the availability of sustainable feedstock to support a mature industry remains a hotly debated issue.

At best, green diesel certification provides a bridge to more scalable thermochemical conversion pathways for aviation biofuels: fuels derived from large-scale algae production, or more likely, the realization of industrial-scale non-food oil production from promising feedstocks like jatropha or camelina.  At worst, it buys the aviation industry a few more years to build on the difficult progress that has already been achieved.

While Boeing and commercial airlines are among the winners if green diesel certification goes through in the near term, refining stalwarts like Finland-based Neste Oil, Honeywell’s UOP, and Valero are also well-positioned to ride a surge in investor activity.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Biofuels","path":"\/tag\/biofuels?page=3","date":"5\/24\/2015"}