Navigant Research Blog

Putting Blockchain in Its Proper Context

— November 10, 2017

Coauthored by Stuart Ravens

If blockchain evangelists are to be believed, it is going to be big. The so-called Internet of Value will disrupt and decentralize our financial system, healthcare, and electric grids. The massive, centralized powers-that-be will not make it out of this transformation intact.

The truth? There is something out there with significant potential to decentralize much, but not all, of our societal infrastructure. Is blockchain the magic ingredient used in decentralization? No, not really. As Bitcoin expert Andreas Antonopoulos notes, claiming that blockchain is the factor that creates decentralization is like claiming that wings alone are responsible for aviation … but put wings on a building and it still won’t fly.

What Guarantees Trustless, Immutable Decentralization?

Released in 2009, the Bitcoin platform revolutionized decentralization by making every transaction 100% verifiable by every participant without having to rely on anything beyond the software it runs on. It also prevents anyone from meaningfully gaming the system. Andreas Antonopoulos spells out four key pieces of Bitcoin that—only in combination—lead to a fully decentralized and immutable application:

  1. A blockchain ledger that is distributed throughout the system and can be validated by any participant.
  2. A consensus algorithm that is open and subject to precise and consistent rules.
  3. A reward of real value for properly validating the next block, (importantly) paid in bitcoin.
  4. A competition that determines who gets to validate the next block and receive the reward. Critically, each competitor must pay a significant cost in computing energy as an entry fee.

Similar levels of decentralization are critical to proving asset, identity, or land ownership. However, there are many instances when decentralization or immutability need not be so strict, including when:

  • Only partial decentralization is needed.
  • Specific actors can be trusted.
  • Access to the ledger should be closed.
  • The ledger may require (limited) editing.
  • There are no rewards for validation.

Given individual application requirements and significant practical issues with implementing Bitcoin (e.g., mining costs, limited transaction throughput, and validation latency), blockchain solutions have been developed that rely on different structures and consensus mechanisms. Their properties fall within a wide range of decentralization and immutability.

Blockchain Does Not Guarantee Bitcoin Superpowers

Although blockchain is an underlying technology of Bitcoin, it is wrong to equate all blockchain-based solutions with Bitcoin—yet, this happens frequently. There is a risk that such misinterpretation will confuse and disappoint potential customers, and wasted resources will lead to negative press.

Utilities keen to investigate blockchain must ensure they get the right qualities, and enough of these qualities, to satisfy their requirements. They must also understand that each custom combination of consensus, trust, risk, and reward remains unproven until it has been tested at scale.

As the common component of many distributed data and/or asset systems, blockchain is becoming the de facto term for trustless, immutable decentralization. However, this is often not the case. Unfortunately, there is presently no competing term that covers the range of features and characteristics of products that include blockchain.

Navigant Research believes the industry must be more circumspect about blockchain. While there are some attractive use cases for the technology within the utility industry, there are many issues that must be resolved. Potential users should add a caveat emptor to their optimism. Navigant Research will publish a series of blockchain reports in the near future that will investigate the consequences of these issues in greater detail.

 

The Peer-to-Peer Future of EV Charging

— November 1, 2017

In cities where EV drivers believe they have limited access to publicly available charging infrastructure, the resulting range anxiety hinders plug-in EV (PEV) adoption rates. VW’s subsidiary, Electrify America, required investment in infrastructure because of the dieselgate settlement, which should help reduce range anxiety in many areas. A variety of new technologies are bringing new value to the existing EV charging infrastructure, a trend that could also help ease range anxiety and grow the EV market.

Communication Standards

Many standards from organizations such as the Society of Automotive Engineers have been established for communications between EVs and EV supply equipment (EVSE). Of note is International Standards Organization (ISO) 15118, which specifies a common understanding of all processes between an EV and EVSE. Specifically, ISO 15118 standardizes the communications between the EV communication controller and the supply equipment communication controller. The communication standards enable everything from bidirectional charging to transaction services. Vehicles that comply with ISO 15118 will allow for automatic owner account authentication at charging points that both prevents data manipulation and initiates seamless smart charging of EVs. The establishment of this standard enables bidirectional charging, which can provide utilities with grid services and creates the groundwork for the buying and selling of electricity between the grid, EVSE, and EVs.

RFID Technology

South Korea has been aggressively trying to support and expand its EV fleet. In 2015, the City of Seoul partnered with company Power Cube to give out special electric charger cables to enable drivers to recharge their vehicles at 100,000 locations with standard outlets. These cables are equipped with RFID readers that scan an RFID tag attached to the power outlet to be used. Power Cube then processes the transaction by transmitting the driver’s identity, time, place, and electricity purchased via a 3G wireless module included in the charging cable to Power Cube. Power Cube bills the user later, and then pays the electricity provider.

Seoul hoped that the giveaway would incentivize more private EV ownership; as of the program launch, the majority of EVs in Seoul were owned by public sector entities. It intended to give out all 100,000 cables by 2018. Each cable costs 1 million won (about $917) and has a charge capacity at 3.3 kW. While there has been no coverage of the program since its inception, there continues to be a market opportunity for transaction authentication in the EV charging space, with the City of Busan’s launch of a similar program in 2016.

Blockchain Technology

Blockchain could offer a low cost and reliable way for transactions to be recorded and validated across a distributed network with no central point of authority. It also removes some of the technological barriers associated with dynamic and wireless charging; these services can use blockchain technology to record and validate the purchase of electricity from these chargers automatically, without driver intervention.

In Germany, blockchain technology can be used to authenticate and manage the billing process for EV charging stations. For example, Car eWallet will enable a driver’s car to pay for charging, with no need for pulling out a credit card.

Share&Charge, another e-mobility service, has completed its pilot in Germany and is partnering with eMotorWerks to bring its services to California. Participation in the pilot will be based on a first come, first serve basis. Share&Charge uses the Ethereum blockchain because of its support for smart contracts. It creates a token on this chain and users provide/receive payment in these tokens that then can be redeemed for traditional currencies.

Although the use of these services for widespread dynamic charging services is still a ways down the road, these EV-focused transactional services could expand publicly available charging infrastructure by enabling point-to-point sharing of private EV charging stations. They could also enable future applications such as toll payments and carsharing services.

Navigant Research’s upcoming report, Wireless EV Charging, focuses on how wireless charging technology has become increasingly more efficient over the past couple years. A growing number of pilot programs and applications are popping up around the world. As these actors move forward with expanding charging infrastructure, developing technologies may help process and authenticate future transactions.

 

Trust in Blockchain

— October 3, 2017

Trust. You can’t touch it or smell it, but it’s a vital ingredient in every commercial transaction. It exists between companies and their staff, suppliers, and customers. The entire worldwide monetary system is based on the principle of trust. One could argue that trust, above all else, is what binds the modern world together. However, trust is not blind: mistrust will also exist between the parties of financial transactions. Consequently, it is hard to build trust, but it can turn to dust in a matter of seconds.

Part of the attraction of cryptocurrencies, like Bitcoin, is that trust is placed in its consensus mechanism and not between a transaction’s counterparties. Anonymous users exchange Bitcoin without the need to measure a counterparty’s trustworthiness. Blockchain technology creates trust across the entire Bitcoin network through its distributed ledger and consensus-based transaction verification. While Bitcoin receives a great deal of media attention, blockchain technology is coming out of Bitcoin’s shadow as a potential game changer for transactions. Many industries are investigating blockchain’s potential to remove the requirement of central market functions, speed up transaction processing, and reduce overall costs. In addition, there are other use cases outside of transaction management. However, there are many issues with the technology that must be resolved before it becomes a mainstream technology.

Ironically, Trust Could Be Blockchain’s Undoing

Few technologies as immature as blockchain receive comparable media interest. Despite any current large enterprisewide deployments, blockchain evangelists have touted it as a technology panacea. It will likely be years before blockchain applications move into the mainstream. Blockchain startups have attracted billions in investment, yet these companies are exactly that: startups. In some cases, little more than a handful of enthusiasts with a good idea and some seed capital.

And therein lies the problem: blockchain could suffer from a huge trust issue. Not in the creation of trustless networks, but trust in the technology itself. The expectation of blockchain’s potential—driven by an unrelenting hype machine—far exceeds its current ability to deliver. It will likely be 4 or 5 years before we see any large-scale blockchain deployments. In the interim, some startups will run out of capital and close, others’ products will fail to deliver on their promises. What is certain is that blockchain developers will come across many issues converting blockchain from an open source software into something that is enterprise ready, scalable, and able to provide viable alternatives to existing technologies.

Expectations Could Be Set Too High

The problem is that 4 or 5 years is a long time to wait. The hype around blockchain is such that expectations can be set unrealistically high. I expect a great deal of negative press if too many startups fail or if too many projects become encumbered by too many unforeseen technology problems. The industry will lose its trust in the entire blockchain industry. A dollar value can be attributed to companies’ trust in blockchain—it’s currently the total amount pouring into trials and proofs of concept. A breakdown in trust will mean an end to project funding and the end of the road for blockchain.

Blockchain has some unique features that could benefit many organizations in the future. But it is not a panacea. It needs time to overcome its teething problems and to demonstrate its value. The hype surrounding the technology could well be its undoing.

Companies investigating blockchain should do so with the full knowledge that it is an emerging technology. It will take time, patience, and investment to adapt blockchain for enterprise-class deployments.

 

Understanding Peer-to-Peer, Blockchain, and Transactive Energy

— March 9, 2017

Coauthored by Richard Shandross

These days, clean energy media and the utility industry are abuzz with talk about peer-to-peer (P2P) energy, the idea that power generation and consumption can be fully decentralized. More specifically, startups in multiple places around the globe have latched upon the concept of utility customers who own renewable energy resources—prosumers—selling their power directly to their neighbors or others in their town or city. They promise platforms that empower customer choice, support local green energy, and sometimes even save or make the customer money in the process. It’s a very appealing idea, and the customer excitement it generates has not escaped the eyes of utility management. Many utilities are considering their own play in this space, and several have announced products and/or partnerships.

Invariably, the solutions involve blockchain technology. Blockchain is the epitome of decentralization, and some implementations allow users to enter into smart contracts as part of a complete transaction platform. Because of this pairing of P2P energy transactions with blockchain technology, many people equate transactive energy with blockchain P2P. However, transactive energy represents a broad set of activities that includes much more than this type of solution.

Possibility of True P2P Energy Transactions

A more fundamental question is whether true P2P energy transactions are even possible. Traditionally, P2P transactions occur when peers make their resources directly available to other participants without central coordination. There are a few select scenarios in which this can occur between prosumers and consumers (for instance, in microgrids that can be isolated from the main distribution grid). Yet, for the majority of customers, this is not how distributed power transactions will work. Two factors typically prevent transactions that are being labeled as P2P to deviate from true P2P:

  1. Unless the two parties run their own power line between their respective sites—which is highly unlikely—the power generated by prosumers and the power used by consumers must travel over a utility’s distribution network. The operation of this network is coordinated by the distribution utility, not the peers in the transaction.
  2. Because the distribution network is used, the prosumer will be paid for the power it exports, and the consumer will pay for the power it uses, according to the utility tariffs applicable to them. The two parties do not determine the price; rather, they use the blockchain platform to negotiate and implement their own, separate transaction. That transaction is in addition to, rather than in place of, the standard transaction with the utility.

In other words, the distributed nature of blockchain technology does not mean that everything about what is being called blockchain P2P is distributed. The purchase and sale of power on a distribution grid involves centralized control.

We will discuss situations in which a true P2P energy transaction is possible in a separate blog. But for the vast majority of cases, a different type of connection between prosumer and consumer is needed to achieve the goals of customer choice, support of local generators, green energy, etc. An alternative already exists, which is to intentionally include distribution and/or supply companies in the transaction. An example of this would be a model in which:

  • Consumers pay their current retail tariff—including taxes and distribution charge—or a shade below it (as an incentive) for locally sourced power. This tariff could incorporate pricing signals that incentivize behavior that supports grid operation.
  • The distribution network operator receives a small fee for the use of its infrastructure.
  • The supply company earns a small fee for operating the transactive platform—which could be based on blockchain to save on transaction and processing costs.
  • Prosumers are paid a price significantly above wholesale, but below retail.

Role of Blockchain and Transactive Energy

What about the role of blockchain in the electric power industry? That is a big subject, one that is currently under construction by many parties in the industry. Here are a few possible ways to employ blockchain—any of which could have a significant impact on the power industry or portions of it:

  • Data logging: For example, Grid Singularity in Austria is setting up a platform for monitoring and sharing of power/energy production data worldwide.
  • Asset valuation: Another Grid Singularity innovation, the blockchain would store immutable performance data for an asset.
  • Certificates: P2P market ledger for renewable energy certificate trading and purchase.
  • Bill payment: Would allow unbanked customers to pay bills via cryptocurrency. Another use would be third-party bill payments by NGOs, charities, relatives, etc.
  • Conditional energy supply: Smart contracts could be employed to allow condition-based choice of generation sources involving weather, prices, or other complex conditions.

Transactive energy and blockchain are both exciting, emerging technologies that are currently in nascent states. There is potential for them to be employed together to positive effect. However, they should not be equated with each other and, except in rare situations, they do not enable true P2P energy transfer.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Digital Utility Strategies, Electric Vehicles, Energy Technologies, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Transportation Efficiencies, Utility Transformations

By Author


{"userID":"","pageName":"Blockchain","path":"\/tag\/blockchain","date":"11\/20\/2017"}