Navigant Research Blog

States’ Roles in the Clean Power Plan

— June 25, 2015

Cross_Gatel_webThe U.S. Environmental Protection Agency (EPA) plans to finalize the Clean Power Plan (CPP) this summer; as part of the plan, states will have 1 to 3 years to submit State Implementation Plans (SIPs) to the EPA for review. Some states are already starting the planning process to develop an SIP, and most are beginning with stakeholder meetings that include utilities and other major players in their state. Other states are waiting to see the final regulation before they begin.

States face a complicated web of decisions when crafting SIPs. The figure below shows a simplified hierarchy of the paths that they may take. States are unlikely to go through the decision process in a linear fashion; instead, they will need to consider all options and narrow them down based on their existing policies, resources, and stakeholder goals, among other factors.

SIP Example Decision Process

 

CPP Decision Tree - Recreated

(Source: Navigant Consulting)

SIP or FIP?

The first decision a state needs to make is whether to submit an SIP. If a state does not submit an SIP, the EPA will impose a Federal Implementation Plan (FIP). The EPA has indicated that they may include insights on what an FIP will look like when they release the final rule this summer. Some states have passed legislation limiting their state agencies from submitting an SIP without legislative approval, which could impede those states from submitting an SIP at all.

A decision that will need to be made early in the process is whether or not a state wants to work with other states to submit a regional plan. There have been proposals, for instance from Duke Nicholas Institute, that individual plans could be crafted to be standalone and still allow trading of credits with other states, similar to the way that renewable energy credits (RECs) can be traded among states even though Renewable Portfolio Standard (RPS) policies were not coordinated prior to implementation. However, many states are already in discussions about coordination efforts— for example, 14 Midcontinent states submitted comments to the EPA on its proposal and held a stakeholder event on June 5.

If states do work together on regional implementation plans, under the proposed rule they would have an additional year before their plan is due to the EPA. This allows additional time to coordinate among the many players involved across all coordinating states, but narrows the amount of time between when the implementation plan is approved by the EPA and compliance begins— potentially as little as 1 year.

Targets and Policies

Another decisions that states must states weigh in on is whether or not to use the rate-based target laid out by the EPA or to convert it to a mass-based target. This decision is interrelated with the kind of policy regime a state chooses to include in its SIP. A rate-based target may be more appealing to states that impose individual unit obligations on fossil units in their state, as it eliminates the uncertainty surrounding future load growth. Conversely, a mass-based target may be easier to implement in the northeast where a mass-based cap-and-trade system already exists.

States will also need to determine how to integrate existing renewable and energy efficiency policies into their SIPs and decide if new policies are needed. These include RPS, energy efficiency standards, and updates to building codes, and can be combined with cap-and-trade, as in California, or standalone.

There are many additional considerations for states to take into account as they craft implementation plans. For the best overall outcome it is recommended that states start early, have meaningful stakeholder involvement throughout the process, and leverage modeling and analytical tools where possible.

 

Green House Gas Emissions and HVAC

— June 9, 2015

The scientific consensus around climate change is that greenhouse gases (GHGs) emitted by human activities are creating a very serious problem. As a result, most major global regions have adopted targets for reduction of GHG emissions, notably carbon dioxide (CO2). The largest source of CO2 emissions comes from the burning of fossil fuels for generating electricity, powering vehicles, and providing heat. Heating, ventilation, and air conditioning (HVAC) equipment plays a large role in CO2 emissions, as it accounts for roughly 40% of total building energy consumption.

Thus, increasing the efficiency of HVAC equipment is a clear way to address GHG emissions. But, it’s not the only way HVAC equipment can help. Indeed, in a recent report, the World Resources Institute points out that non-energy and non-CO2 emissions account for 22% of all U.S. GHG emissions and are expected to rise. The report goes on to recommend the reduction of hydroflourocarbons (HFCs), which are used as refrigerants in HVAC equipment. However, when it comes to HVAC, what HFCs should be replaced by is not entirely clear.

Engineering Requirements

Within an HVAC system, refrigerant needs to be evaporated, condensed, and be compressed in such a way that the system can provide cool air. As a result, the band of temperature and pressure in which refrigerant changes phase between liquid and gas is narrow. Within a building, even the best HVAC systems may leak at some point in their lifetime. So, refrigerant needs to be non-toxic and non-flammable to keep building occupants safe. These requirements were met by chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs). However, the proliferation of these refrigerants introduced a new problem: ozone depletion. While HFCs have solved the problem of ozone depletion, they are a GHG that traps heat in the atmosphere, contributing to climate change. The next generation of refrigerant needs to solve all of these problems.

So far, finding one refrigerant that is functional, safe, and doesn’t have severe impacts on the environment has been difficult. Potential candidates that have a lower the global warming potential than HFCs include R-32, which is mildly flammable, and CO2, which doesn’t fully change phase. Both have been commercialized. R-32 has been available in Japan since 2012. CO2 is being used as a standalone refrigerant in Europe and has recently been deployed in the United States. While challenges still remain, the development of these refrigerants presents the promise of reduced GHG emissions.

 

The Energy Efficiency Way to Emissions Reductions

— January 15, 2015

The Obama administration has few levers to pull to shift the United States’ position on climate change, besides enforcing the Clean Air Act of 1970.  That legislation authorizes the U.S. Environmental Protection Agency (EPA) to enforce regulations on power plants and associated pollutants.  The Clean Air Act put the onus on individual states to design programs to follow the EPA’s federal guidelines.  Last June, the EPA released its Clean Power Plan (CPP), with a new ambitious target: carbon emissions reductions totaling 30% relative to 2005 emissions by 2030.  The proposed rule includes the following primary components:

  • Four building blocks that define the EPA’s Best Strategy for Emissions Reductions
  • State-by-state 2030 carbon emissions reduction targets and interim targets based on a 2012 base year
  • Numerous alternative emissions reduction strategies, including renewables, under construction nuclear generation, and energy efficiency

Cost-Effective Efficiency

Not surprisingly, some legislators are arguing that the CPP is unconstitutional, functioning as a federalization of states’ activities via the EPA.  Some utilities are also not happy with the CPP, as they are going to have to be held to real climate goals.  Utilities that burn coal or other fossil fuels inefficiently will have to pay to upgrade their facilities or face stiff penalties.

In a recent white paper, Navigant reported that energy efficiency is a cost-effective way for states, utilities, and businesses to achieve the CPP targets, with considerably less investment than upgrading or building new power plants.  Of all the building blocks, energy efficiency is the only one that is not a form of generation.  From a cost perspective, energy efficiency is a highly competitive approach to offsetting supply requirements and reducing carbon emissions.   This approach can be used for both overall total load reductions, but also for peak shaving (i.e., reducing the carbon intensity of electricity demand at the times when the grid is dirtiest – usually in the afternoons).

The Challenges

The major challenge for using energy efficiency as a way to achieve policy goals lies in how and where it is implemented.  Utility energy efficiency programs are one approach, and are forecast to grow, according to the Lawrence Berkeley National Laboratory (LBNL).

Energy Efficiency Spending by Utilities

(Source: Lawrence Berkeley National Laboratory)

Many utility programs require 5 or 6 years to mature and develop savings streams that persist.   Developing efficiency programs today will allow the savings potential to grow prior to the start of the CPP requirements.

It’s not just up to the utilities.   By focusing on the bottom line – the financial savings – the business community can help states achieve their CPP goals, whether they realize it or not.  Navigant Research’s report, Energy Efficient Buildings: Global Outlook, found that the current energy efficient building market is generating over $300 billion annually and is expected to grow, in major part, because the software and hardware works, and saves end users money.  If the EPA uses the green of a dollar to promote the CPP, it could help states reach their targets.

 

California Sets an Ambitious Energy Agenda

— January 9, 2015

Living in California, it’s easy to forget that the rest of the world doesn’t always see things in the same way.  Given the ambitious energy and climate change goals outlined in Governor Brown’s inaugural address on January 5, this divergence may only grow.

What exactly did the governor propose?  Here’s a snapshot summary of targets he set for the state by 2030:

  • Increase from one-third to one-half the portion of the state’s electricity derived from renewable sources
  • Reduce today’s petroleum use in cars and trucks by up to 50%
  • Double the efficiency of energy use in existing buildings while also making building heating fuels cleaner

The Center of Innovation

For investors in and developers of clean energy technology, Brown’s targets mean that California will continue to lead the United States in terms of R&D and commercialization of renewable energy, electric vehicles, and smart building automation products.

Perhaps the biggest surprise for skeptics of Left Coast policy aspirations is that data suggests California is likely to meet its AB 32 goal of reducing emissions of greenhouse gases to 431 million tons by 2020.  While the rest of the world continues to heat up and multilateral emissions reductions efforts by the United Nations in Lima, Peru late last year once again faltered, the only U.S. state to pass climate legislation with concrete objectives appears to be on its way to actually reaching those targets, despite a long list of hiccups and controversies.

Changing the Game

Will California meet Brown’s new goals?  That’s impossible to predict, but the real questions now lie in the details.  I, for one, was delighted to see the governor mention microgrids, since apparently he agrees that distributed renewables (such as rooftop solar PV) will be game changers.  The best way to transform such distributed energy resources from problems for the grid into solutions for climate change – including resilient communities that can keep the lights on during extreme weather events – is through the islanding capabilities of microgrids.

When I first started covering wind power in the ‘80s for the national trade press, I often dealt with skeptical East Coast editors.  “Do those wind turbines really work?” they would ask.  “Isn’t that just one of those California things?”  This was, of course, during Brown’s original tenure as governor, when he was dubbed Governor Moonbeam by the national press.  From a handful of wind farms jump-started by flawed but effective tax credits, a global industry was spawned that now generates an accumulated 321,559 MW of electrical capacity, or just under 3% of the world’s total electricity, according to Navigant Research’s most recent World Market Update report on the wind industry.  That’s up from less than 1% of California’s total electricity in 1985, 30 years ago.

Sometimes, the only way to leap forward is to go out on a limb on the policy front, and then see if entrepreneurs and capital markets are up to the task.  Only time will tell which is the wiser course – the prudent go-slow pace of national politics or the risk-taking adventure being drawn up in Sacramento.  I know where I’m placing my bets.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Carbon Emissions","path":"\/tag\/carbon-emissions","date":"7\/5\/2015"}