Navigant Research Blog

If $9 Billion of Renewable Energy Is Curtailed in 2030, What Opportunities Will Emerge? Part 2

— October 4, 2016

Cyber Security MonitoringThe first part of this blog covered the growing trend of renewables curtailment. This second post will cover the solutions that are turning curtailment from a problem into an opportunity.

Many solutions have been proposed to address the integration of renewables into the energy sector. The first two, transmission upgrades and storage technologies, tend to get a lot of media attention. However, these can be seen as “necessary but not sufficient” options in the race to integrate renewables. Flexible gas generation technologies will also play a growing role in the grid of the future.

Transmission upgrades connect renewables to more loads and diversify generation resources. Germany, with 26% of its generation coming from intermittent sources in 2015, has been building out transmission to connect the windy south of the country to the industrial north. As in many global markets, transmission expansion is subject to NIMBYism, and in Germany’s case is being forced underground, which is more expensive. California, with 14% of its generation from intermittent sources in 2015, may be expanding its independent system operator (ISO) into a regional organization across the climatologically diverse Western Interconnection, though the decision has been delayed for further review. And China, generating just around 3% of its electricity from wind in 2015, still curtailed billions of dollars of wind power in recent years and is quickly pushing to interconnect it with load.

Storage technologies are growing quickly, as well. Hydroelectric storage is a cheap and clean technology that nonetheless sometimes battles drought-related, environmental, and even methane emissions concerns. Batteries, including lithium ion and other types, are rightly making news as costs fall and policies like incentives and storage mandates drive the market toward rapid growth. These and related storage technologies, including compressed air storage, are growing quickly and will become a major part of our electric grids.

Flexible Solutions

Flexible gas-based generation solutions tend to get less media attention but will also be crucially important in the flexibility of the grid.

  • A 2016 National Renewable Energy Laboratory (NREL) report suggested that for California to accommodate 50% of its generation coming from solar PV, a wide range of changes would need to take place. Notably, flexible thermal generators and combined heat and power (CHP) plants were mentioned as a key necessity, even if the amount of energy storage is boosted by more than 10 times what is outlined in the current mandate.
  • A 2015 report by the Union of Concerned Scientists on California’s grid states that under a 50% Renewable Portfolio Standard (RPS) scenario, curtailment could be cut from 4.8% to 3.2% if natural gas resources are able to turn down to half-power.
  • A 2015 report points out that Denmark was able to generate 39% of its electricity from wind thanks in large part to flexible district energy CHP resources. These district energy systems are in some way the core of Denmark’s grid and are expected to become electricity consumers rather than producers during times of high wind generation.
  • A 2016 report funded by the German government suggests that power-to-heat will be more important than batteries in balancing that country’s grid in the future.

Most of these reports suggest that fossil-based sources will fuel this generation, though carbon-neutral biogas and hydrogen are taking strides to catch up too. These gas-based technologies have the dual benefit of boosting grid flexibility while (in most cases) decarbonizing heating, an area of growing concern. As a complement to the transmission and battery storage changes making headlines, these sources are set to become key contributors in the grid of the future.


Rail Looks to Move the LNG Market

— September 13, 2016

Pipeline (2)The natural gas market in North America continues to have oversupply issues and a much lower price than other regional markets. Natural gas producers in Canada, Alaska, and other parts of the United States that are looking for new outlets for gas deposits may soon see new sales thanks to an old form of transportation—rail.

For the first time in decades, liquefied natural gas (LNG) is being used to power locomotives in the United States, and trains will soon begin delivering LNG by tanker for the first time. In June, the Florida East Coast Railway (FECR) began the first line in nearly 20 years to operate an LNG-diesel duel fuel train in the United States. The train runs between Jacksonville and Miami, and the company intends on converting all of its locomotives to dual-fuel setups.

Displacing Diesel

FECR is currently sourcing its engines from General Electric. Also offering LNG conversion kits to railway operators are manufacturers Energy Conversion, Inc. and EMD. Railroad operator BNSF is also testing LNG locomotives. The use of LNG in locomotives first began in the 1980s by Burlington Northern Railroad, but after several trials, engine conversion efforts lost steam, until efforts to put them back online returned just a few years ago.

The potential market for LNG as a rail fuel is considerable as diesel fuel consumed in the top 7 major freight railroads was about 7% (3.6 billion gallons) of the U.S. total diesel fuel consumption in 2012, according to the US Energy Information Administration (EIA). Supplying engines with LNG fuel while in operation requires the addition or modification of an LNG tender car. LNG tender manufacturers in North America include Westport Innovations of British Columbia and Chart Industries. The EIA expects that switching to cheaper LNG will more than repay the cost of converting the engine and tender car that holds the fuel.

Alternative to Pipelines

Rail is also being proposed as an alternative distribution mechanism to sometimes-contentious gas pipelines. The Alaska Railroad Corp. (ARRC) became the first rail agency to obtain approval from the Federal Railroad Authority (FRA) to transport LNG by rail tanker in October 2015. Transportation of LNG from where it is produced to interior markets in Alaska is likely to begin soon, and Union Pacific Railroad has similarly applied for permission to transport LNG in the lower 48. Specially designed LNG tanker cars are needed to store the fuel during transport, and new designs are currently in use in Japan and in Europe, where companies VTG and Chart Industries are collaborating.

LNG and oil pipelines continue to face opposition for their potential to endanger the environment that they pass through, so transporting LNG by rail could be a less objectionable method of distribution. Switching from diesel to natural gas also has environmental benefits. According to the EIA, natural gas produces 27.4% less CO2 than diesel when being burned.

Utilizing the railways for both delivery and consumption of LNG has inherent synergies, especially if the refueling depots and processing plants can be located near rail terminals. Until this market matures, some natural gas producers in Canada struggling to find options for exporting the abundance of natural gas are moving into the United States and Mexico in order to maintain growth.


Should We Worry About Carbon Dioxide Emissions From Natural Gas Surpassing Coal?

— September 13, 2016

Smoke StacksAccording to the US Energy Information Administration, in 2016, CO2 emissions from natural gas are expected to surpass coal emissions in the United States for the first time since 1972. As CO2 emissions from natural gas increase due to growing natural gas consumption in the energy sector, major concerns have developed among environmental groups and others about natural gas becoming a threat to climate change. However, to generate the same amount of power, natural gas emits only 55% of the CO2 compared to coal. As natural gas displaces coal, CO2 emissions that could have come from coal will be cut by half. As long as the growth of natural gas is at the expense of coal consumption, it will help the fight against climate change.

It would be ideal if both natural gas and coal could be replaced with renewable energy such as solar and wind. However, when the sun doesn’t shine and wind doesn’t blow, electricity still needs to be generated. Even with cutting edge technology on energy storage, demand-side management, and energy efficiency, the need for stable electricity generation from reliable sources cannot be fully eliminated. Natural gas is by far the best option for such a reliable source due to its affordability and abundance in the United States. Besides the benefit of fewer  emissions, the price of natural gas is also competitive with coal. The United States is also the largest natural gas producer in the world thanks to the boom of shale gas. In general, as more renewable generation capacity will be added than fossil fuel capacity this year (and likely in the next few years), natural gas is essential as a backstop for grid operators to address the intermittency of renewable energy.

The Problem of Methane Leakage

Nevertheless, natural gas is not perfect. The methane leakage problem could seriously undermine the climate benefit of natural gas. At the same time, the US Environmental Protection Agency is making crucial progress in setting regulations on restricting methane leakage. With proper regulatory incentives and continuing technology improvement, the effects of methane leakage can be contained to make natural gas a viable complement to a lower carbon future.


Europe’s Energy Transition Megatrends and Tipping Points, Part V: Globalisation and Regionalisation of Energy Resources

— September 2, 2016

Oil and Gas ProductionJan Vrins coauthored this post.

In our initial blog on Europe’s energy transition, we discussed seven megatrends that are fundamentally changing how we produce and use power. Here we discuss how the globalisation and regionalisation of energy resources is fundamentally changing the European energy industry.

What’s Happening?

The EU is actively aiming to deliver on Europe’s 2030 climate and energy targets while ensuring security of supply and affordable prices. The EU also seeks to be a world leader in renewable energy. Achieving these goals requires a transformation of Europe’s electricity system. To assist in this transformation, the EU must achieve a balance of meeting consumers’ expectations, delivering benefits from new technologies, and facilitating investments in low-carbon generation while also recognising the interdependence of member states. A critical part of this initiative is connecting isolated national and regional electricity systems to secure supply to help achieve a truly integrated EU-wide energy market—a key enabler for the continent and one that goes well beyond precursors such as Nord Pool. While the United Kingdom’s vote to leave the EU raises a number of questions about future policy, it is too early to say what effect Brexit will have on the United Kingdom’s participation in the EU’s future single energy market. (The United Kingdom has, however, been an enthusiastic proponent of this to date.) What is clear is that a focus on greater levels of interconnection (both offshore and onshore) and energy efficiency will continue to be necessary aspects of EU energy policy—and ones that receive much scrutiny.

To get access to the necessary energy supply and resources, more regions, countries, energy markets, and utilities—including those in Europe—are looking beyond the traditional borders of their energy business and territory.

What’s Driving This Change?

The main drivers behind this globalisation and regionalisation of energy resources are:

  • Access to cheaper natural gas globally
  • Accelerated shift of generation resources to renewables, which requires greater system flexibility to maintain security of supply
  • Economic and political imperatives for energy import and export

Access to Cheap Natural Gas Globally

Driven by a technology breakthrough applied in the field, shale gas has transformed the North American gas market and stands poised to significantly affect the global gas market in the future. On February 24, 2016, for the first time in history, liquefied natural gas (LNG) from North America was exported from the contiguous United States—from the Cheniere Sabine Pass facility in Louisiana—to Europe, a historic moment in the North American gas industry.

Globally diverse sources of natural gas and increased movement of these sources—in the form of LNG by ship—is becoming increasingly prevalent from places far from one another. As Australia, the United States, and Canada follow Qatar with plans to export LNG in large volumes, the global gas market is poised for a renaissance. Although the LNG industry has been a victim of its own success as prices have declined, the growing availability of gas to global markets is set to impact places that never previously had access. This movement is bringing with it the opportunity for new gas-powered industries such as petrochemicals and an increased availability of cleaner gas-fired power generation to people and places around the world.

Extensive European infrastructure for gas transmission, including pipelines and new LNG facilities, is helping ensure that cheap gas will be available in most parts of Europe. There is a lag effect as to how this impacts gas generation development; however, in the short to medium term, it at least underpins gas’ ability to remain a key fuel source for heating, industrial use, and flexible power generation. While the latter use may fly in the face of carbon targets, with questions around new nuclear and other baseload low-carbon generation, the net reduction from replacing coal with gas is still significant and may prove to be at least a convenient bridging arrangement.

Accelerated Shift of Generation Resources to Renewables

In Part III of this series, we discussed the changing generation mix across Europe. Virtually all net growth in recent years has come from renewables. To achieve this while managing the system security of supply requires much greater flexibility in the way the electricity systems are managed across Europe. Flexibility is essential and the key underpinnings of this are interconnection, storage, and demand response. To date, the most prevalent of these has been the rapid growth in interconnection—for example, the import of French nuclear power to support Germany’s solar boom and the HVDC interconnection to enable the United Kingdom and Denmark to rapidly develop their wind generation sector. It can be argued that without access to hydro reserves from Norway and Sweden, neither country would be able to accelerate their current offshore wind program. This interconnectedness is a strength of the European system, but it also means that, in effect, each nation relies on others for their ultimate security of supply. In the future, the impact of storage will complement this and aid renewables integration and system stability. Storage and the ongoing development of demand response will also lead to local regionalisation, whereby markets at a more local level are necessary to deal with increasingly decentralized generation and the local flexibility enabled by smarter metering.

Economic and Political Imperatives

The third driver may be obvious to some but is the most challenging to achieve in practice in many ways. Greater affordability for consumers across Europe is promoted through a more regional approach to energy supply. However, macroeconomic theory and national politics do not always pull in this same direction. It sounds simple for Norway to increase its exports to the United Kingdom via a new interconnector as both countries gain overall; however, if this leads to higher wholesale prices in Norway through a reduced surplus, then consumers may see an impact on their retail price. To date the economic efficiency of Europe’s market coupling has proven a sound platform for rapidly improving the regionalisation of energy resources across the continent while political will has held firm in most respects. Some initiatives such as the North Sea Grid may work on a region-wide basis yet do not translate into a commercial rationale that leads to specific profitable projects for investors. Given the importance of a united energy policy for maintaining affordability and energy security across the continent, this needs to remain a critical area of policy and regulatory attention as 2030 targets come firmly into focus.

So What Does This Mean?

It is worth reminding ourselves of the underlying objectives as defined by Europe’s Energy Union:

  • Electricity systems will become more reliable, with lower risk of blackouts.
  • Money will be saved by reducing the need to build new power stations.
  • Consumers’ increased choice will put downward pressure on household bills.
  • Electricity grids will be able to better manage increasing levels of renewables, particularly variable renewables like wind and solar.

Looking forward, the EU market, national policymakers, and utilities first need to adapt their long-term resource plans and incorporate regional scenarios for power supply, while also building in a rapidly changing fuel resource mix toward renewables and natural gas. Second, they must think outside the box with regard to securing fuel or access to renewables well beyond their traditional territory borders. Third, to effectively develop system plans, the planning processes need to take into account the entire regional transmission system. Regional entities should find a way to bring together players such as distribution network operators, municipalities, and other smaller industry players to ensure their needs are also addressed and more holistic solutions are presented. Finally, to facilitate and enhance emerging market offerings such as enterprise information management, the planning toolkit needs to expand to better address the challenges of large-scale renewables integration across multiple regions.

This post is the sixth in a series in which we discuss each of the power industry megatrends and the impacts (“so what?”) in more detail. Our next blog will be about merging industries and new entrants. Stay tuned.

Learn more about our clients, projects, solution offerings, and team in our Navigant Energy Practice Overview.


Blog Articles

Most Recent

By Date


Clean Transportation, Electric Vehicles, Finance & Investing, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Transportation Program, Transportation Efficiencies, Utility Innovations

By Author

{"userID":"","pageName":"Carbon Emissions","path":"\/tag\/carbon-emissions","date":"10\/21\/2016"}