Navigant Research Blog

Congestion Charging Makes a Comeback in Major Cities

— March 31, 2015

Congestion charging—and similarly ambitious programs for traffic management—are once again on the agenda for the mayors of large cities struggling with traffic jams, rising pollution levels, and shortfalls in transport funding. The fact that a traffic pricing scheme is again under discussion in New York is a significant indicator of the changing mood, and there are reasonable grounds to believe that this time it might happen.

Other cities are also stepping up their programs to manage or reduce private vehicle use. The mayor of Paris is considering a series of restrictions on high-emission vehicle use in the city, starting with a ban on older diesel engine vehicles. Madrid—another city suffering from poor air quality caused mostly by diesel vehicles–has introduced intelligent parking meters that charge higher fees for more polluting vehicles (there is no charge for electric vehicles [EVs]), and there are plans to extend the current controlled areas for vehicle access to other parts of the city. Beijing’s city leaders are also considering a form of congestion charging, though public resistance continues to be a considerable barrier in the Chinese capital.

Pioneers

Singapore led the way on road user charging in cities in the 1970s, but it was the introduction of the London Congestion Charge in 2003 that seemed to herald the wider adoption of such schemes around the world. However, enthusiasm waned after similar projects were rejected in cities like New York, Manchester, and Edinburgh. For most city leaders, such large-scale projects were seen as politically risky. So although road charging is used on many highways around the world and is becoming more attractive as an alternative to general road or fuel taxes, the reference cases for urban congestion control remain relatively few. Alongside London and Singapore, Stockholm, Gothenburg, and Milan are still the most notable examples.  While many cities still grapple with basic arguments over congestion management, Singapore continues to evolve its approach and is now proposing a new system, which will give it almost total visibility on vehicle movements in the city.

Political Courage

Gaining acceptance for a congestion charging scheme requires strong, even brave, political leadership and the willingness to engage with citizen and business concerns. Apart from a common resistance to paying for something that was previously free, many citizens and businesses are wary of schemes that are not linked to improvements in the transport system. The London and Stockholm schemes, for example, were both linked to funding improvements in transport infrastructure, and this is a key part of the recent proposals for New York, as well.

It’s also important that a city can offer viable alternatives in terms of connected and reliable transit scheme. The growing acceptance of EVs in cities (which are excluded from many charging schemes) and the availability of electric car-sharing programs like Autolib’ Paris means that there are now ready alternatives to commuters who can’t or don’t wish to abandon their own vehicle.

Congestion charging schemes today are part of a much broader debate on the nature of urban mobility, with better information and more alternatives available for many city travelers. Once again, we are looking to see if New York will pick up the baton.

 

California Utilities Look to Manage EV Charging

— March 27, 2015

Through multiple programs aimed at both supply and demand, California has developed the most vibrant market for plug-in electric vehicles (PEVs) in the world. According to the forthcoming update of Navigant Research’s report, Electric Vehicle Geographic Forecasts, the total number of light duty PEVs in California is expected to surpass 140,000 by the end of this year and 1.5 million by 2023. The state’s electric power sector is taking note because the speedy PEV market growth may pose problems if PEV charging isn’t managed well.

The most likely problems will occur at the residential transformer, where a cluster of PEVs may outstrip a transformer’s capacity, requiring costly upgrades and/or repairs. To date, this issue has been fairly minor, with California’s three major utilities (Pacific Gas and Electric [PG&E], Southern California Edison [SCE], and San Diego Gas & Electric [SDG&E]) reporting that, of the 97,350 PEV customers in their combined service territories from July 2011 to October 2014, there have only been 126 PEV-related infrastructure upgrades.

Getting Worse

These problems are likely to worsen with the aforementioned 10-fold increase in PEVs in under 10 years. Looking ahead, the California Public Utilities Commission (CPUC) launched a PEV submetering pilot in September 2014 through the big utilities. The pilot is designed to lower energy costs for PEV owners through time-of-use (TOU) rates that incentivize off-peak charging and measure their energy consumption for vehicle charging apart from their overall energy consumption. By separating PEV charging, utilities could assess how best to influence PEV charging beyond TOU rates to avoid infrastructure upgrades.

Although TOU rates are effective at managing demand for a more efficient grid at the generation and transmission level, their effect on localized demand issues like transformer capacity is limited. Automated charging of PEVs based on TOU rates essentially creates a new spike in demand at the beginning of the off-peak period. This spike looks marginal at the grid level, but can be fairly drastic at the transformer feeding a cluster of PEVs.

Leading Edge

Thus, utilities, electric vehicle supply equipment (EVSE) manufacturers, and EVSE service providers are looking to create more dynamic and advanced PEV charging schemes to manage charging at all levels of the grid. Greenlots, for example, recently announced its partnership with EVSE LLC to demonstrate the company’s SKY Smart Charging system in 80 Level 2 workplace chargers at SCE facilities. The SCE project will examine how PEV owners respond to demand response events and dynamic pricing schemes for a number of purposes, including mitigating local transformer issues.

Outside of California, other PEV markets are expanding, too; utilities in these areas will need to begin testing and implementing similar technologies and programs soon. Companies competing for utility services in California now will be well served by expansion elsewhere and likely represent the leading edge of charging services development for years to come.

 

Making Sense of the Apple iCar

— March 23, 2015

Since early February, evidence has been piling up suggesting that Apple may develop an electric car to launch by 2020. Apple has yet to verify that it’s developing a car, but that has not stopped many from speculating what the Apple car might look like or how Apple might enter the automotive industry. Dan Akerson, the former CEO of General Motors (GM), weighed in on the subject, saying that instead of building cars, Apple should team up with automakers to develop operating and entertainment systems for vehicles.

As Akerson pointed out, the auto industry is dealing with heightened regulatory and safety standards alongside low profit margins in comparison to Apple’s other product lines, creating a grim outlook for any company looking to enter the auto industry. It should be noted, though, that Apple would be entering an auto industry that is significantly different than the one Akerson has known.

Beyond ICEs

For the last 100 years, the light duty vehicle hasn’t evolved much beyond the conventional internal combustion engine (ICE) with four wheels and multiple cup holders. To be sure, the established auto industry has made drastic improvements to this basic concept. But in the next 100 years, vehicles are going to look a whole lot more like smartphones, a category in which Apple has some expertise.

While plug-in electric vehicles (PEVs) represent only a small fraction of the vehicle market now, their numbers are growing quickly and will continue to increase, as electricity is clean and cheap and batteries are getting cheaper and better. Already, automakers are displaying fully electric vehicles for the mass market with 200+ mile ranges, to be sold within the next 3 years. Much of the established auto industry’s expertise and capabilities still center around making cars with ICEs. When that technology becomes obsolete, space will open for new competitors to emerge, such as Tesla and, yes, Apple.

Connected Future

Even more quickly than vehicles are becoming electrified, they’re becoming connected. A white paper published by the Continental Automated Buildings Association (CABA) outlines the advantages of connectivity for motorists, primarily around safety and autonomous driving. Additionally, vehicle connectivity can lower the cost of electricity for PEV owners and help create a more efficient and cleaner grid infrastructure. These developments are detailed in Navigant Research’s new report, Vehicle Grid Integration.

Though Apple would encounter struggles entering the established auto industry, the war chest Apple has should be more than enough to overcome those struggles. Further, there is, arguably, no other non-automotive company better positioned to provide an electric/connected vehicle than Apple. In fact, if Apple isn’t planning to develop a car, it could be missing out on a big opportunity to enter the fastest growing segment of one of the largest global markets.

 

Energy Storage Leaders Stumbled, Then Survived

— March 20, 2015

At a time when the major electric industry players were either unwilling or not nimble enough to develop energy storage systems integration expertise, four growing energy storage players with four distinct technologies took a risk to develop this expertise. Over the last few years, each of these companies failed financially and was subsequently acquired, in some cases more than once. In nearly every case, private equity firms stepped in, seeing an opportunity to invest in a maturing technology company with specialized expertise in the market.

Citing Tesla founder Elon Musk’s determination to build a massive Gigafactory to manufacture batteries for his vehicles, E Source Senior Fellow Jay Stein has argued that company failures like these indicate the shortcomings of the overall market. This is a logical fallacy.

Number of Deployed Systems Market Share by Top 10 System Integrators, Excluding Pumped Storage and CAES, World Markets: 1Q 2015

(Source: Navigant Research)

Detours Behind

The chart above is derived from Navigant Research’s Energy Storage Tracker 1Q 15, a global database of energy storage installations that includes 808 projects. This specific graph charts the top 10 systems integrators of energy storage in terms of number of systems deployed globally. Four of the 10 market leaders for systems integration have gone bankrupt and been acquired in the past several years. NEC Energy Solutions, formerly A123 Energy Solutions, was acquired following a bankruptcy filing, and the grid business was subsequently spun off and sold to NEC Corporation for approximately $100 million in 2014. Beacon Power was acquired by a private equity firm following a bankruptcy filing in 2012, and Xtreme Power (now Younicos Inc.) was acquired by Younicos AG in 2014, also after filing for bankruptcy.

All three firms were focused on a core grid storage technology (lithium ion batteries, flywheels, and advanced lead-acid batteries, respectively), but all spent a great deal of resources in the earlier days of the market learning how to integrate complete systems. Ultimately, all three firms developed this expertise, and NEC Energy Solutions and Younicos repositioned themselves as systems integration companies, offering software, controls, and integration expertise as opposed to pure-play battery suppliers. Beacon Power is a market leader in flywheels and flywheel systems integration and has developed a modular flywheel product with built-in power electronics for simpler integration and installation.

Managers, Not Markets

Finally, Coda Energy repositioned itself as an energy storage integration firm in 2013 after filing for bankruptcy. The company rebranded and shifted its product offering to target stationary energy storage using a battery management system, battery thermal management, and a sophisticated power source controller.

Together, these four companies account for 21% of the global market share for the top 10 systems integrators (although part of this market share is attributed to Younicos AG). These companies and others like them are challenging incumbents such as ABB and S&C Electric, demonstrating that their earlier stumbles arose out of flawed management and/or strategy, not failed markets or futile technologies.

Equating a management failure with a market failure ignores the value of the technology. Whether the Gigafactory will be Musk’s Waterloo or Austerlitz has less to do with the technology and much more to do with Tesla’s strategy and execution—and Musk has proven he can accomplish both in the automotive and the financial services worlds.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Clean Transportation","path":"\/tag\/clean-transportation","date":"4\/2\/2015"}