Navigant Research Blog

Cloud Connections Bolster In-Vehicle Systems

— January 26, 2015

With the average transaction prices of new vehicles in the United States hitting nearly $35,000 at the end of 2014, drivers can be grateful that the cars they purchase are also more durable and reliable than ever before. The average age of the more than 200 million vehicles on the road in the United States today is now nearly 11.5 years.  However, that longevity has a big potential downside: as computing and communications technology marches on to improve safety, efficiency, and reliability, many of those existing cars will be incapable of participating in these advances.  Luckily, cloud computing could come to the rescue.

According to Navigant Research’s report, Autonomous Vehicles, full-function self-driving vehicles aren’t expected to be available in significant volumes until late in the 2020s.  Until the fully self-driving car arrives, we’ll have a steady stream of incremental improvements in advanced driver assistance systems.  Thanks to increasing connectivity in vehicles, we’re also less likely to be stuck with the capability that was built-in when the vehicle rolled off the assembly line.

No Car Left Behind

General Motors (GM) and Audi are among the manufacturers that are already building 4G LTE radios into many of their new vehicles.  When this capability is combined with advanced new microprocessors from companies like NVIDIA and Qualcomm, vehicles will be able to leverage cloud computing infrastructure to get smarter as they age, rather than being left behind.

At the 2015 Consumer Electronics Show in Las Vegas, NVIDIA unveiled a new generation 256-core processor, called the Tegra X1, along with electronic control units powered by this advanced chip.  One of the problems that driver assistance and autonomous systems have to solve is being able to recognize and distinguish the objects detected by all of the sensors on new vehicles.  The human brain is remarkably adept at distinguishing the nuances between an animal and pedestrian or an ambulance and a delivery van.

Detection before Failure

This sort of image recognition is far more difficult for a computer, so the Tegra X1 is designed to collect image data from its 12 camera inputs and transmit it back to data centers where it can be aggregated with information from other vehicles.  By combining data from many vehicles, the object recognition can be dramatically improved, and updated image libraries can be fed back to vehicles for improved onboard sensing ‑ even without changing hardware.

GM is also harnessing the power of the cloud to provide drivers with predictive diagnostic information for their vehicles using OnStar.  Available for more than a decade, OnStar provides subscribers with vehicle health reports when faults are detected.  Now, by monitoring critical systems such as the battery, starter, and fuel pump and sending this information back to the cloud, OnStar is able to detect subtle changes in performance that have previously been shown to be precursors to component failures.  The OnStar Driver Assurance system can then notify the driver so that an impending problem can be corrected before the driver is left stranded on the side of the road.  This predictive diagnostic system will be available on several of GM’s 2016 model year vehicles.

As automakers roll out new infotainment interfaces, such as Apple CarPlay and Google’s Android Auto, drivers will also benefit from improved voice recognition that leverages massive data centers run by these technology companies.  More robust and reliable voice control will help reduce driver frustration and keep their attention on the road ‑ at least until the car can take over completely.

 

With Gas Prices Low, EV Drivers Adjust to Timely Price Info

— January 22, 2015

While the falling price of gasoline is welcome news for many drivers, it undercuts the financial argument for driving a plug-in electric vehicle (PEV).  On a per-mile basis, electricity in the United States is between 20% to 35% of the cost of driving a gasoline-powered car, depending on the utility rates and gas taxes.  Avoiding paying $50 or more for a weekly fill-up on gas compared to around $40 per month for charging an EV gives EV drivers financial satisfaction.

Gas has dipped below $2 in some states, and U.S. sales of plug-in hybrids have simultaneously slumped, falling 26% in November 2014 versus a year ago, according to HybridCars.com.  However, EV economics can be further improved by charging off-peak, and recent studies show that not only are significant savings possible, but also that consumers will adjust their charging to take advantage of the lower rates.

Time to Charge

A recent demonstration that provided EV owners with timely information about the cost of electricity and grid health indicates that the cost of charging can be reduced by up to 60% through smart charging.  Customers in the study had access to hourly utility rates through a connection to the Siemens energy cloud, and charging power levels were alternated based on the needs of the grid.  The study was performed by Duke Energy and Siemens and delivered charging information to mobile phones, tablets, and computers, enabling EV drivers to schedule charging based on the anticipated costs given the varying rates at different times of the day.

Siemens delivered electricity rate information via its computing cloud using the OpenADR demand response protocol, which enables energy-consuming devices (including charging stations) to respond to grid conditions.  The Society of Automotive Engineers (SAE) has established many standards for communications between charging stations and EVs; others, including the CEA-2045 modular communications interface standard, enable communications between charging stations with smart meters and home networking devices.

A Bad Connection

Meanwhile, in December, the U.S. Department of Energy published a report summarizing six projects related to EV charging that were funded in 2009 as part of the American Recovery and Reinvestment Act.  Entitled Evaluating Electric Vehicle Charging Impacts and Customer Charging Behaviors, the report states that when provided with discounted overnight rates for EV charging, consumers will adapt their charging habits.  “Customers took advantage of time-based rates to save on overnight residential charging” when they were able to pre-program charging, according to the report.  Convenience in managing charging is viewed as essential to minimize the cost of EV charging.

The report also points out that work needs to continue on connecting EV chargers with smart grid devices.  The Sacramento Municipal Utility District (SMUD), which was one of the six utilities managing the projects, found that charging equipment “successfully connected to SMUD meters about 50% of the time for several reasons, including poor ZigBee radio signal quality (often range related), problems with power supply circuits in the EVSE [electric vehicle supply equipment] communications module packet loss recovery, and environmental interference.”

Simplifying and reducing the cost of EV charging is critical to convincing more consumers to opt for EVs over conventional vehicles –  especially when prices at the pump are low.

 

In Growing EV Market, Volkswagen Is On the Rise

— January 20, 2015

Navigant Research estimates that plug-in electric vehicle (PEV) sales in 2014 surpassed 320,000, 60% above 2013 sales.  The U.S. market accounts for over one-third of all sales; however, the largest growth has come from China, with 2014 sales estimated to have nearly quintupled those in 2013.  The biggest developments of 2014 were BYD’s introduction of the Qin and BMW’s global introductions of the i3 and i8.  The two automakers, which combined only accounted for about 2% of the global market in 2013, now account for more than 10%.  Although 2014 wound up being a good year for the PEV market, with double to triple-digit growth in every major region, 2015 will be far better.

In Navigant Research’s report, Electric Vehicle Market Forecasts, we forecast that PEV sales in 2015 will surpass 570,000, growing nearly 80% from 2014.  The U.S. market, which grew around 30% in 2014, is expected to grow by more than 70% in 2015.  Similar gains will likely be made in China and Europe.  The bump in 2015 comes from the introduction of Tesla’s next vehicle, the Model X, alongside a number of new PEV models, primarily from Volkswagen (VW).

Late Bloomer

Likely the most significant development in 2015 will be the dramatic expansion of VW’s PEV market share.  VW has been slow to enter the PEV market, but it is now one of the largest players.  Eight PEV models (six plug-in hybrid electric vehicles [PHEVs] and two battery electric vehicles [BEVs]) are available in various regions through different brands: VW (two PHEVs, two BEVs), Audi (one PHEV), and Porsche (three PHEVs).  In 2013, VW accounted for less than 1% of the global PEV market; in 2015, Navigant Research expects the automaker to account for 10%.  This will likely make VW, along with Mitsubishi, the third-largest PEV maker, behind Nissan and Tesla.

 

PEV Market Share, World Markets: 2015

(Source: Navigant Research)

The German Wave

Further strengthening VW’s position in the PEV space are its plans to roll out even more PEV adaptations to existing luxury vehicle model lines from Audi, Porsche, and Bentley to compete against Tesla.  Navigant Research believes that VW is likely to overtake Nissan in 2017, but still trail Tesla.

VW’s broad adoption of PEVs is similar to the strategies of other German automakers, including BMW and Daimler.  These types of commitments are uncommon in Japan and the United States, where major automakers, besides Nissan, have been hesitant to enter the PEV market in force.  The net effect of this trend could produce a PEV industry synonymous with German engineering, not unlike Japan’s preeminence with hybrids.

 

Fast EV Chargers: Still Seeking a Market

— January 16, 2015

DC charging stations provide a significant benefit to electric vehicle (EV) drivers by allowing them to recharge in 30-60 minutes.  But while the market for DC chargers is growing, it is doing so at a relatively slow pace, thanks to the cost and complexity of deploying the chargers. A new report by North Carolina-based firm Advanced Energy on its DC fast charging deployment coordination project describes how the company found five hosts to deploy DC fast charging stations, provided for free of charge by Advanced Energy.  The report serves as a useful primer on EV charger installation generally and fast charging specifically.  It also gives a sense of how the public charging infrastructure market, while continuing to grow in key markets, is still in an early adopter phase that requires infrastructure companies to spend significant resources educating potential customers and guiding them through the planning and installation of EV charging.

Advanced Energy launched this initiative to deploy up to 10 DC fast charging stations for public use in North Carolina in March 2013.  Sixteen host sites applied for the equipment, with five ultimately installing it.  The site selection process highlights the practical considerations that must be taken into account by businesses interested in offering DC charging.  In this program, host sites are responsible for both installation and operational costs.  With installation costs expected to range from $20,000 – $60,000, a free charger becomes much more expensive.  Not surprisingly, these costs were two of the top factors that prevented some applicants from deploying stations.

The Cost of Power

Installation is also a barrier for Level 2 commercial charging, as the cost of trenching or boring from the charger site to the electrical breaker box are significant for any type of charger, Level 2 or DC.  Limiting the distance from the circuit breaker to the charger is essential to minimize installation costs, but it’s not the only consideration.  The site also has to be one where a DC charger, with its large footprint, can fit without reducing the parking space.  The report also recommends that the chargers be placed away from other infrastructure and nearby trees.  And of course the spot must be readily accessible by drivers.

In addition, the DC charger’s power requirement is a major cost factor.  The chargers use three-phase 240V or 480V input; if the site is not already equipped for this, it is a significant added expense.  Then there is the issue of ongoing power demand.  Thirty-kilowatt (kW) and 40 kW DC chargers run the risk of triggering demand charges for customers if they exceed a certain level under their utility rate agreement.

Successful But Unprofitable

The good news is, the sites that installed chargers are seeing rapidly increased utilization.  Two spots — a large retail outlet and a municipal center – reported around 500 sessions combined in the third quarter of 2014, up from 350 over the previous two quarters.  Energy demand per session has also risen.  Note that the stations are currently free to use; nevertheless, given that this is very early in the deployment of these stations, and there are fewer than 3,100 PEVs in all of North Carolina.  The success of these DC chargers provides evidence that, if you install them, drivers will come.

This conclusion is also supported by the experience of the first fast charger deployed on the Chargepoint network. The 25 kW Fuji fast charger, operated by charging services company Evoasis, was installed at a Marriott in San Juan Capistrano, roughly halfway between San Diego and Los Angeles. After 18 months, Chargepoint reported that the station had delivered 2,900 charging sessions.  While the station was free for the first few months, Evoasis began charging $10-15/hour in early 2013. Usage remained steady and Chargepoint reports that the station generated $10,000 in revenue over its first 18 months.

However, the 250 sessions a quarter reported for the North Carolina stations is less likely to make DC charging adoption look like a profitable enterprise for the near-term, given the expected cost of $30,000-$60,000 to purchase and install.  At this stage of the EV market, DC charging will likely require either innovative financing options – perhaps leasing to own or financing with no interest; offsetting incentives, either from government or programs such as this; or alternative revenue models like advertising.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Clean Transportation","path":"\/tag\/clean-transportation","date":"1\/30\/2015"}