Navigant Research Blog

After a Century, the Era of the Cadillac V8 Is Over

— April 16, 2015

Twenty years ago, the thought of building a flagship Cadillac sedan without a V8 engine under the hood would have been virtually unthinkable. Nonetheless, in the coming months, the all-new Cadillac CT6 will hit the road to take on the likes of the Mercedes-Benz S-Class and BMW 7 Series with only 4- and 6-cylinder engine options to start with plus diesel and plug-in hybrid electric capability in the future. General Motors (GM) has created what it hopes will be a viable competitor to the segment leaders by harnessing a combination of advanced powertrain technologies and lightweighting to achieve both its performance goals and increasingly stringent fuel efficiency and emissions targets.

Cadillac introduced the first mass-produced V8 engine 101 years ago and, until as recently as 2010, every top of the line Cadillac had a minimum of 8 cylinders under the hood. After first being teased in a television ad run during the 2015 Academy Awards broadcast, the CT6 is debuting at the 2015 New York Auto Show and goes on sale later this year.

Bigger, Better, Not Heavier

In order to help meet the often conflicting goals of performance, driving dynamics, and energy efficiency, Cadillac is incorporating all of the major technologies discussed in Navigant Research’s Automotive Fuel Efficiency Technologies report. Despite its significantly larger size compared to the existing CTS sedan, the CT6 is estimated to weigh about the same 3,600 lbs thanks to extensive use of aluminum in its structure.

A combination of stampings, castings, and extrusions accounts for 64% of the mass of the structure and contributes to an overall reduction of 198 lbs compared to a comparable steel version. GM developed new techniques for laser and spot welding of aluminum in addition to the rivets, screws, and adhesives used extensively by Ford in its new F-150 pickup trucks.

Still High Performance

Starting from a lighter platform enables the engineers to utilize smaller, more efficient engines without sacrificing the performance that customers in this segment expect. At launch, the CT6 will be available with GM’s existing 2.0-liter turbocharged 4-cylinder, an all-new 3.6-liter normally aspirated V6, or a twin-turbocharged 3.0-liter V6 producing 400 horsepower and 400 lbs-ft. of torque. All of the engines feature direct injection and variable valve timing. The V6s will be GM’s first overhead-camshaft engines to feature cylinder deactivation with the ability to disable valve actuation and fuel flow on 2 cylinders under light load conditions.

Each power plant is paired with one of GM’s new 8-speed automatic transmissions and has auto stop-start functionality to shut down the engine when the vehicle comes to a stop to prevent wasting fuel while idling. Cadillac won’t reveal fuel economy numbers for the CT6 until later this year, but the new 3.6-liter V6 is expected to increase fuel economy of the midsize CTS by 9% compared to the 2015 model.

V8 86ed

In addition to these advanced gasoline engines, Cadillac plans to add both diesel and plug-in hybrid electric powertrains to its lineup over the next several years. What about the classic V8 configuration? Those are now limited to a pair of niche but still highly profitable segments, the ultra-high-performance CTS-V sedan and the full-size Escalade SUV. The rest of the lineup will rely on fours, sixes, and electrification from now on. It seems that a century after it began, the era of the mainstream Cadillac V8 engine has drawn to a close.

Update: Shortly after this blog was posted, Cadillac president Johan de Nysschen contacted me to confirm that the brand does in fact have a new high-performance V8 engine in development. While V8s will no longer be the volume powertrain, they will remain part of the future Cadillac lineup.

 

Seeking Fuel Economy, Automakers Slim Down

— April 16, 2015

As automakers scramble to stay on track to meet the 54.5 mpg corporate average fuel economy mandate by 2025, weight reduction is expected to be one of the key pathways to hitting that target. During 2015, General Motors (GM) is launching a wide range of new-generation vehicles—from its subcompact Chevrolet Spark up through its flagship Cadillac CT6 sedan, with virtually every new model boasting significant weight reductions thanks to new computer-aided engineering (CAE) processes.

Lightweighting and Global Platforms

In Navigant Research’s Automotive Fuel Efficiency Technologies report, lightweighting is identified along with engine downsizing and engine stop-start technologies as the main vectors for achieving the most cost-effective improvements in fuel efficiency for high-volume vehicles. GM is pursuing all of these approaches, but its weight reduction efforts are among the most notable. Similar to Ford’s approach of rationalizing its product lineup with common vehicles sold in global markets, GM also made a shift to global platforms in the latter part of the last decade.

Designing global vehicles that must conform to often conflicting crash safety standards led to a first generation of vehicles that often turned out heavier than previous models because they were not properly optimized. For GM, the problem was exacerbated by the financial difficulties it faced during the late 2000s leading up to its 2009 bankruptcy reorganization. The continuous effort to cut costs led to a gutting of engineering resources as staff were either laid off or fled for greener pastures in other industries.

Revving Up

Over the last 5 years, as the auto industry has recovered to prerecession sales levels, the once sparsely populated engineering centers at GM, Chrysler, and Ford are now full again and new design techniques are being applied to the next generation of vehicles. We’ve already seen Ford introduce an all-new aluminum-bodied F-150 pickup truck that cut nearly 700 lbs of weight.

So far in 2015, GM has announced the next-generation Chevrolet Volt and Malibu and the new Cadillac CT6 sedan, with a new Chevrolet Camaro and Cruze still to come. The Volt and Malibu will be nearly 250 lbs and 300 lbs lighter, respectively, while the CT6 is projected to have a base curb weight of about 3,600 lbs. The latter is comparable to the midsize CTS sedan, which is 8 inches shorter and 2 inches narrower. The CT6 is roughly 800 lbs lighter than the Mercedes-Benz S550, 700 lbs less than the current BMW 740i, and 400 lbs less than the similarly sized Cadillac XTS.

Optimization

GM has achieved these impressive reductions through extensive application of multidisciplinary optimization (MDO). Traditionally, the development of various aspects of a vehicle was siloed, with teams responsible for specific aspects of the design. The expanded use of advanced CAE and simulations has enabled greater collaboration early in the design process, leading to more granular optimization. Engineers are able to select a wider variety of materials, including aluminum and high-strength steel alloys, to achieve the best balance of weight, strength, manufacturability, and cost.

Just as Ford was able to maintain or improve the payload and towing capabilities of its trucks while shifting to smaller, more efficient engines, GM is able to improve the performance and driving dynamics of its vehicles despite downsized engines. Chevrolet has projected a 7% improvement in combined fuel economy for the base gasoline engine Malibu to 31 mpg, while the new hybrid version is projected to achieve 47 mpg combined. Over the next 10 years, this pattern of weight reduction is expected to continue as other new materials such as carbon fiber composites are put to use, benefiting both electrified vehicles and those that continue with internal combustion engines.

 

Automakers Turn to OSs to Add Revenue

— April 8, 2015

Automakers looking to continue their revenue growth are challenged by the diminishing prospects for post-sale revenue from replacement parts. Conventional cars are becoming increasingly reliable and electric vehicles (EVs) need little servicing due to their reliance on electronic rather than mechanical components.

Meanwhile, connected vehicle technologies are enabling automakers to remotely deliver software for entertainment, safety, and performance upgrades. Central to this new revenue stream are vehicle operating systems (OSs) that can receive content from automakers or stream it from mobile phones.

Google’s Android Auto and Apple’s CarPlay software platforms are starting to take over, according to auto executives who spoke on a panel during the recent South by Southwest conference.

A Flat World

“Android and CarPlay have made a flat world” for app developers looking for space inside vehicles, said Nick Sugimoto, senior program director at Honda. Google’s Play Store, a popular service for downloading music, videos, and games, currently is not being used for sales within cars today, added Sugimoto, but Honda is working with the company to define an automotive platform.

Jenny Kim of Hyundai Ventures said that while her company also supports Android and CarPlay, Hyundai has its own offerings for music and mirroring mobile phone applications. Its Blue Link is used to connect to the car to the home and networked home devices. Hyundai subsidiary SoundHound, which provides the platform for the Hyundai Sonata, announced that it can also identify the music being played on wearable devices.

Moving control of popular applications from the mobile phone to the dashboard enhances safety, according to Sugimoto. Instead of looking at the phone on your lap, drivers can be looking forward at the display, he said.

Beyond Honda and Hyundai, Android and CarPlay are becoming the default automotive OS on many other models, such as the recently announced Volkswagen Passat Alltrack that supports both platforms. Conversely, Ford has switched to BlackBerry’s QNX OS for its in-vehicle platform.

In the Air Tonight

Connected vehicle technology is being leveraged most in EVs, which include wireless connectivity so that drivers can monitor the state of the battery charge, find charging stations, and perform other functions. Tesla Motors has been the most aggressive in over-the-air upgrades to vehicles to boost performance or enhance safety remotely rather than having to recall vehicles to be serviced. Tesla recently issued a remote upgrade for the Model S that will alert drivers if they stray out of range of one of the company’s Supercharger stations when driving on a low battery.

“There’s no question, over the air is coming” as a mechanism for issuing fixes and adding new features, said Hyundai’s Kim. Over-the-air distribution costs less and allows automakers to keep up with the advances in software outside of their normal 5-year or more development cycle.

For details on the varied initiatives that car companies are exploring to boost revenue, see Navigant Research’s report, Alternative Revenue Streams for Automakers.

 

Uber Expanding into Electric and Autonomous Vehicles

— April 7, 2015

Since Uber’s creation in 2009, the adoption of the company’s mobile app-based transportation service has exploded and the service is now available in 56 countries and over 200 cities worldwide. In fact, it was recently reported that there are now more Uber cars than yellow cabs in New York City. With nearly $3 billion in total funding raised by 2015, Uber is looking to expand its business into the growing electric vehicle (EV) and autonomous vehicle markets.

Offering local customers emissions-free transportation options, Uber has partnered with BYD to provide electric e6 taxis in Chicago. Uber drivers have the option to rent the e6 taxis from the Green Wheels USA dealership for $200 a week, and Uber customers will be able to choose an EV through the smartphone app when booking a vehicle. This new option gives users added flexibility in their riding choices, and more cities around the United States can expect Uber EVs as an option in the near term.

So Long, Driver

Likely to be more disruptive than the introduction of EVs, autonomous vehicles could have a much more notable impact on Uber’s business. In February 2015, Uber announced that it is setting up a laboratory in Pittsburgh to develop self-driving technology. In partnership with Carnegie Mellon University, the company will reportedly be developing the core autonomous technology, the vehicles, and associated infrastructure at the Pittsburgh facility. Uber CEO Travis Kalanick has stated in the past that he would gladly replace human drivers with a self-driving fleet of vehicles, as Uber drivers reportedly take home about 75% of every fare.

Beyond massive savings on costs for Uber, and potentially its customers, autonomous vehicles would make Uber a much safer service—not just in terms of smoother running vehicles with (likely) fewer accidents, but also in terms of the well-being of the passengers. Uber has come under intense scrutiny as of late, as accusations of assaults on passengers by Uber drivers have come from numerous customers from a variety of countries. While Uber does conduct background checks on its drivers, prosecutors in California are suing the company for alleged exaggeration regarding the rigor of its background checks.

Navigant Research’s report, Autonomous Vehicles, projects that globally, close to half of all new vehicles sold in 2035 will have some form of autonomous driving capability installed. Uber may have autonomous vehicles on the road even sooner, which would go a long way toward ensuring safer driving and safer environments for customers who would no longer have to consider the possibility of a dangerous driver.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Clean Transportation","path":"\/tag\/clean-transportation","date":"4\/19\/2015"}