Navigant Research Blog

Is the Gogoro E-Scooter Priced Too High?

— July 1, 2015

Taiwan-based electric scooter (e-scooter) battery swap company, Gogoro, has finally unveiled pricing for the most ambitious e-scooter program in the world. Gogoro’s e-scooter, called the Smartscooter,  and access to a battery swap network will cost consumers $4,100 and about $30 per month, respectively. For the company’s first deployment in Taipei, it is offering 2 years of free maintenance, 1 year of theft insurance, and 2 years of free battery swapping. The Gogoro Smartscooter became available for pre-order in Taipei on June 27.

There are several ways to interpret the pricing announced by Gogoro. On one hand, for an exceptional looking and performing e-scooter, the price seems fair. Gogoro’s Smartscooter has a range of 60 miles and a top speed of 60 mph (going from 0 mph to 31 mph in 4.2 seconds). Advanced features, such as smartphone integration, light-emitting diode (LED) headlights and tail lights, an intelligent security system, a digital dashboard, and an overall sleek design, make this scooter far more attractive than most other electric models. On the other hand, many consumers in Asian megacities, including Taipei, are accustomed to paying $500 or less for low-end gasoline-powered scooters. A higher-end, more comparable 125cc gas scooter costs roughly $2,600, which is still considerably less than Gogoro’s Smartscooter.

Lack of Battery Ownership Remains an Issue

Gogoro CEO Horace Luke had previously stated that the company’s e-scooter would be in the $2,000 to $3,000 price range. The Smartscooter was expected to cost about the same amount as a comparable gasoline scooter since consumers of the Smartscooter won’t actually own the batteries used in the vehicles (which constitutes a large portion of the overall cost and value of the e-scooter). Removing the battery from the purchase price was meant to drastically reduce the cost of the vehicle, using more of a leasing-style mobile phone business model, where the initial purchase price of the e-scooter is reduced to encourage early adoption, and subscription fees for the use of the company’s battery swapping network will eventually make up the difference over time. It is somewhat surprising that even without consumers having to pay for a battery, the e-scooter is still more expensive to buy than a gasoline equivalent.

Taiwan Subsidies a Factor

Nevertheless, Gogoro claims that when government subsidies and the cost-savings of using the battery swap network instead of gas are considered, the overall cost of owning a Smartscooter will be less than its gas counterpart after 2 years. E-scooters do receive subsidies in Taiwan, with the amount ranging from TWD21,000 ($663) to TWD34,000 ($1,074) in most regions. These subsidies should help narrow the gap in price differential and encourage larger adoption of the e-scooters.

While it remains to be seen if Gogoro can win over thousands of customers to support its battery swap network, if successful, a network like Gogoro’s could become the most impactful development in electric transportation since Tesla introduced the Model S. Nearby, enormous scooter markets such as China, India, and Indonesia could see battery swap networks in their megacities sooner rather than later if Gogoro is successful in Taiwan.

For more information on electric scooters, see Navigant Research’s Electric Motorcycles and Scooters report, which forecasts global cumulative sales of electric scooters will total over 42 million units from 2015 to 2024.

 

Longer-Range LEAF Aims to Alleviate Anxiety

— July 1, 2015

At Nissan’s recent annual shareholder meeting, CEO Carlos Ghosn announced that the driving range of the LEAF battery electric vehicle (BEV) would be extended to 125 miles (200 km). The update is expected to reinvigorate sales of the LEAF in the United States, which fell by 25.5% during the first 5 months of 2015, according to hybridcars.com.

That BEVs have a shorter driving range than internal combustion engine (ICE) vehicles is one of the factors that has limited sales, as drivers on longer trips don’t want to have to worry about having enough juice to get to their destination. If the U.S. Environmental Protection Agency (EPA) gives the LEAF the proposed 125-mile range rating, that would be a boost of nearly 50% over the current 84-mile range. Since 125 miles is well beyond the range of most daily round trip commutes, more car shoppers would likely consider switching to a LEAF.

Ghosn also said the company has a prototype battery that could give the LEAF up to 310 miles of range, which would make it much more competitive with ICEs. Other BEV manufacturers, including Ford and General Motors (GM) are targeting a minimum of 200 miles of range for their next-generation BEVs to battle the upcoming Tesla Model 3.

According to Navigant Research’s Electric Vehicle Geographic Forecasts report, by 2018 (when several 200-mile range BEVs priced under $50,000 are expected to be available), annual sales of all plug-in electric vehicles (PEVs) are expected to have grown by 168% over 2015 sales.

Decoding the Data

The U.S. Department of Energy (DOE) is conducting a study to see how households with both LEAFs and ICE vehicles  apportion their driving miles. As previewed during the DOE’s Annual Merit Review meeting, the study will survey 37,000 consumers and study in depth the driving habits of 144 households. According to preliminary data from the study, 60% of LEAF households drive the BEV more than their ICE car, and the study looks to understand factors such as greater range or access to charging infrastructure that could increase electric miles driven.

BEVs are suitable for two-car (or more) households where the ICE is used for longer trips. However, the share of households with multiple cars (currently at 57%) is expected to steadily fall in the future as carsharing programs and other mobility services remove the need for a second car. According to the recently published Navigant Research report Urban Mobility in Smart Cities, participants in North American carsharing programs are expected to grow by 10% annually to more than 4 million by 2021.

 

New Efforts Address EV Affordability

— June 29, 2015

Power_Paddle_webThrough the first 5 months of 2015, according to data from Hybridcars.com, plug-in electric vehicle (PEV) sales are down in the United States by 4% from 2014. This is due, in part, to the current price of gasoline being lower than the 2014 price by $0.89 cents per gallon (per the U.S. Energy Information Administration), as well as the drop off in sales of the Chevrolet Volt in anticipation of the updated model coming out soon. In fact, if the year-over-year Volt sales are ignored, the rest of the industry is actually slightly ahead of last year’s pace.

The higher upfront cost of PEVs is clearly one of the major hurdles to greater electric vehicle (EV) sales, along with greater consumer awareness of their benefits in reduced fuel cost, performance, and drivability. The higher price tag precludes many prospective buyers from considering a PEV, although several models are below the current average new car transaction price of $33,363, according to Edmunds.com.

Making PEVs more affordable would bring in EV buyers from a broader audience, as data from a recent Navigant Research survey of consumers in the United States indicates that the interest in PEVs is not limited to high-income families. Of the survey respondents who reported having an income between $25,000 and $50,000 annually, 15% said that they preferred their next vehicle purchase to be a PEV, which was higher than those with income of $50,000 to $150,000 annually (9%).

Incentives and Research

California is trying to make PEVs more appealing to lower-income families in areas where air quality is a concern. New programs for people living in the San Joaquin Valley Air Pollution Control District or South Coast Air Quality Management District provided incentives of up to $9,500 on a PEV purchase depending on the individual’s income level. While it won’t prompt a spike in nationwide sales, a successful program could encourage other regions to similarly target getting more PEVs into lower-income households.

The European Commission is also targeting lowering the cost of PEVs through three research projects. As reported by Automotive Fleet, the 3Ccar project is focusing on reducing the cost of the electronic components, which, along with the battery pack, are the primary contributors to the additional cost of PEVs. Greater volumes of PEV sales will lead to more competition in electronics, which will lower the cost and result in more sales.

Utilities are stepping up by creating programs to make EVs cheaper to operate and to make recharging easier. On June 8, the Edison Electric Institute signed a memorandum of understanding with the U.S. Department of Energy (DOE) that will make utilities more active participants in reducing the cost of electric transportation and to build on the DOE’s goal of making EVs as affordable as a gasoline car by 2022. Greater utility involvement is critical to reducing EVs’ operational costs as well as providing the baseline charging infrastructure for consumer confidence that EVs can be recharged wherever drivers need to go in urban areas.

 

GM Aims For American Diesel and EV Leadership

— June 26, 2015

General Motors (GM) recently hosted a Chevrolet Innovation Day event in Detroit in conjunction with the reveal of the all-new 2016 Chevrolet Cruze compact car. During the sessions attended by media and analysts, GM executives, engineers, and designers covered a variety of topics including both internal combustion and electrified powertrain plans. As all automakers struggle with how to meet increasingly stringent fuel economy and emissions standards while also meeting customer expectations and remaining profitable, GM made it clear that it intends to be the market leader for both diesel and plug-in vehicles.

“We want to make EVs approachable to all, not just the elites,” said Pamela Fletcher, executive chief engineer for electrified vehicles, as she echoed a message dating back to the late 2006 previews of the original Chevrolet Volt concept while also taking a subtle jab at Tesla. At the time, GM officials explained that the Volt was badged as a Chevrolet rather than a Cadillac because the goal was to bring electric vehicles (EVs) to a mass audience at an affordable price. Navigant Research’s Electric Vehicle Market Forecasts projects that luxury brands will account for 50% of global light duty plug-in electric vehicle (PEV) sales by 2018, but Chevrolet clearly wants to shift the percentage toward more mainstream segments.

GM wasn’t entirely successful with the first-generation Volt, but it provided a valuable learning opportunity and those lessons have been fed into the second-generation Volt that is launching this summer. Perhaps more importantly, Fletcher’s team is moving aggressively to bring the knowledge it’s gained about lithium ion batteries and electric drive systems to full battery electric vehicles, such as the upcoming 200-mile range Chevrolet Bolt EV. After revealing the Bolt as a concept at the Detroit Auto Show in January 2015, GM announced just a few weeks later that it would be produced.

Setting a Pace

GM has moved quickly on development that clearly began long before we saw the Detroit concept. Bolt chief engine Josh Tavel announced that his team already has more than 50 pre-production prototypes running in the United States and South Korea where they were built. These are the first prototypes with production representative bodies and other systems, and they typically arrive about 18 months before production. Because of this, it’s reasonable to expect the Bolt to arrive in late 2016 or early 2017, putting it a year or likely more ahead of the Tesla Model 3. Many of the components for the Bolt have likely been tested for as much as 2 years in other vehicles before these prototypes were built.

Recognizing that not all customers have the same needs, GM isn’t planning to rely entirely on batteries to meet fuel efficiency requirements. In 2013, the automaker dipped a toe into the water with a diesel version of the Cruze that gets the best  Environmental Protection Agency- (EPA-) estimated fuel economy of any non-hybrid car in America. With virtually no promotion, Chevrolet sold 6,000 Cruze diesels in 2014. Dan Nicholson, vice president of global powertrain engineering announced that Chevrolet would offer an all-new 1.6L diesel engine in the 2016 Cruze that would offer even better fuel economy and more refinement.

“GM is aggressively going after passenger car diesels in North America and aims to be the market leader,” said Nicholson as he specifically called out long-time diesel champion Volkswagen. Along with new, more efficient gasoline engines with auto stop-start, diesel, and natural gas in trucks and future fuel cell vehicles, GM clearly intends to leave no stone unturned.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Clean Transportation","path":"\/tag\/clean-transportation","date":"7\/5\/2015"}