Navigant Research Blog

‘Not Invented Here’ is Good for Automakers

— February 1, 2015

Not so many years ago, the auto industry was afflicted by a phenomenon known as “Not Invented Here,” or NIH.  As one of the less desirable relics of the massive vertical integration that provided tremendous economies of scale and profits, NIH also led to technological stagnation.  Fortunately, the drive to reduce fatalities, fuel consumption, and emissions has helped push automakers to look beyond their proprietary engineering labs to adopt and fund innovations from both established suppliers and more recently tiny startups.

“Four decades ago, 90% of the intellectual property [IP] in the auto industry originated from inside the OEMs,” said Dr. David Cole, chairman and co-founder of the AutoHarvest Foundation and an engineering professor at the University of Michigan.  “In those days, suppliers would basically build to print, but today they generate more than half of the IP that goes into new vehicles.”

OK to Fail

As Cole observes, as manufacturers have grappled with integrating state-of-the-art electronics, automated driving systems, and electrified powertrains, they have expanded the scope of their collaboration beyond traditional suppliers that are equally inexperienced in these areas.  In 2005, Ford began a development partnership with Microsoft that led to the SYNC in-vehicle connectivity system.

In 2011, General Motors (GM) and BMW took inspiration from Silicon Valley and established GM Ventures and i Ventures.  Both of these venture capital (VC) funds make relatively modest investments in startup companies that have promising ideas that could enhance future mobility.

For example, GM Ventures put $5 million each into Powermat and Bright Automotive and $4.2 million into Sakti3.  Like all VC investments, a certain percentage are expected to fail, while others will catch on.  Electric van builder Bright went bankrupt in 2012, while GM introduced wireless phone charging mats based on Powermat technology into several vehicle lines in 2014.  Sakti3 is still developing a new type of solid-state battery that shows tremendous promise for reducing the cost and improving the range of future electric vehicles (EVs).  Companies that have received funding from BMW i Ventures include JustPark.com and Coulomb Technologies, the company behind the ChargePoint EV charging network.

Opening Up

Ford doesn’t have a separate venture funding arm, but has made strategic investments in companies like Michigan-based software firm Livio.  Ford bought the startup in 2013 and has incorporated its technology for connecting smartphone apps to the vehicle into its new third-generation SYNC system, scheduled to debut later this year.  In 2013, Ford also contributed the code for its SYNC AppLink system to the open-source GENIVI project, so that any automaker can use the system in its vehicles.  In December 2014, Ford announced a partnership with Techstars to launch a mobility startup incubator in Detroit that will also get funding from Verizon Telematics and Magna International.

From newcomers like Tesla Motors to century-old companies like GM and Ford, everyone has recognized that NIH inhibits innovation, and that no one knows where the next great idea that revolutionizes mobility will come from.

 

Schaeffler Shows One Path to Better Fuel Economy

— January 30, 2015

January in Detroit heralds the annual North American International Auto Show (NAIAS), where many manufacturers launch new models and technology.  It’s less well known as a supplier event, but many of the Tier One companies hold press and industry events to showcase their developments, primarily during the media and industry days that are held before the show opens to the general public.

This year, German supplier Schaeffler chose to highlight its project on fuel economy, with a view to meeting the upcoming more stringent American CAFE requirements.  As well as developing specific components and products, the company has incorporated them into an existing vehicle to demonstrate the integration potential.  Phase 1 of the implementation shows one way to meet the 2020 CAFE target on an existing vehicle by making a series of small, low-cost changes; Phase 2 will add additional features to meet the 2025 fuel economy goal.

Hunker Down

The target vehicle chosen was a model year 2013 Ford Escape AWD (all-wheel drive), which features a 2.0-liter engine and Ford’s 6-speed automatic transmission.  For phase 1, Schaeffler engineers implemented an AWD disconnect feature to eliminate additional friction when only two-wheel drive is necessary, a new torque converter damper to allow a lower lockup speed, and an automatic engine stop-start system.  A new thermal management module enabled faster engine warming from cold.  Other detail changes included coated tappets, new balance shaft bearings, and low rolling-resistance tires.

To reach the 2025 target fuel economy, phase 2 houses two main features: ride height adjustment and disconnecting vehicle accessory drives from the engine.  Automatically reducing the ride height as speed increases is a straightforward way to reduce aerodynamic drag, a topic that I discussed in a previous blog.  The idea of disconnecting accessory drives has been around for some time, and is key to extending the value of stop-start systems, but replacing a traditional crankshaft belt drive with individual electric motors is a very expensive solution.

Clutch Move

Schaeffler solves this dilemma by setting up a separate 48V motor generator to power the accessories when the engine is switched off.  The system is controlled by a pair of clutches that can connect the electric motor to either the engine or the transmission.  Using a 48V subsystem allows more powerful regenerative braking than a 12V system, and therefore greater energy recovery, and the motor can also be used to supplement the drive.

Navigant Research has recently released a detailed report on this topic: Automotive Fuel Efficiency Technologies.  The Schaeffler approach nicely illustrates our conclusion that there is no single solution for meeting future fuel economy targets, and future vehicles will have to incorporate many small changes that will combine to deliver measurable results.  Schaeffler’s concept of creating a separate 48V accessory drive subsystem can keep costs manageable while allowing the industry to transition from 12V to 48V.

 

Cloud Connections Bolster In-Vehicle Systems

— January 26, 2015

With the average transaction prices of new vehicles in the United States hitting nearly $35,000 at the end of 2014, drivers can be grateful that the cars they purchase are also more durable and reliable than ever before. The average age of the more than 200 million vehicles on the road in the United States today is now nearly 11.5 years.  However, that longevity has a big potential downside: as computing and communications technology marches on to improve safety, efficiency, and reliability, many of those existing cars will be incapable of participating in these advances.  Luckily, cloud computing could come to the rescue.

According to Navigant Research’s report, Autonomous Vehicles, full-function self-driving vehicles aren’t expected to be available in significant volumes until late in the 2020s.  Until the fully self-driving car arrives, we’ll have a steady stream of incremental improvements in advanced driver assistance systems.  Thanks to increasing connectivity in vehicles, we’re also less likely to be stuck with the capability that was built-in when the vehicle rolled off the assembly line.

No Car Left Behind

General Motors (GM) and Audi are among the manufacturers that are already building 4G LTE radios into many of their new vehicles.  When this capability is combined with advanced new microprocessors from companies like NVIDIA and Qualcomm, vehicles will be able to leverage cloud computing infrastructure to get smarter as they age, rather than being left behind.

At the 2015 Consumer Electronics Show in Las Vegas, NVIDIA unveiled a new generation 256-core processor, called the Tegra X1, along with electronic control units powered by this advanced chip.  One of the problems that driver assistance and autonomous systems have to solve is being able to recognize and distinguish the objects detected by all of the sensors on new vehicles.  The human brain is remarkably adept at distinguishing the nuances between an animal and pedestrian or an ambulance and a delivery van.

Detection before Failure

This sort of image recognition is far more difficult for a computer, so the Tegra X1 is designed to collect image data from its 12 camera inputs and transmit it back to data centers where it can be aggregated with information from other vehicles.  By combining data from many vehicles, the object recognition can be dramatically improved, and updated image libraries can be fed back to vehicles for improved onboard sensing ‑ even without changing hardware.

GM is also harnessing the power of the cloud to provide drivers with predictive diagnostic information for their vehicles using OnStar.  Available for more than a decade, OnStar provides subscribers with vehicle health reports when faults are detected.  Now, by monitoring critical systems such as the battery, starter, and fuel pump and sending this information back to the cloud, OnStar is able to detect subtle changes in performance that have previously been shown to be precursors to component failures.  The OnStar Driver Assurance system can then notify the driver so that an impending problem can be corrected before the driver is left stranded on the side of the road.  This predictive diagnostic system will be available on several of GM’s 2016 model year vehicles.

As automakers roll out new infotainment interfaces, such as Apple CarPlay and Google’s Android Auto, drivers will also benefit from improved voice recognition that leverages massive data centers run by these technology companies.  More robust and reliable voice control will help reduce driver frustration and keep their attention on the road ‑ at least until the car can take over completely.

 

With Gas Prices Low, EV Drivers Adjust to Timely Price Info

— January 22, 2015

While the falling price of gasoline is welcome news for many drivers, it undercuts the financial argument for driving a plug-in electric vehicle (PEV).  On a per-mile basis, electricity in the United States is between 20% to 35% of the cost of driving a gasoline-powered car, depending on the utility rates and gas taxes.  Avoiding paying $50 or more for a weekly fill-up on gas compared to around $40 per month for charging an EV gives EV drivers financial satisfaction.

Gas has dipped below $2 in some states, and U.S. sales of plug-in hybrids have simultaneously slumped, falling 26% in November 2014 versus a year ago, according to HybridCars.com.  However, EV economics can be further improved by charging off-peak, and recent studies show that not only are significant savings possible, but also that consumers will adjust their charging to take advantage of the lower rates.

Time to Charge

A recent demonstration that provided EV owners with timely information about the cost of electricity and grid health indicates that the cost of charging can be reduced by up to 60% through smart charging.  Customers in the study had access to hourly utility rates through a connection to the Siemens energy cloud, and charging power levels were alternated based on the needs of the grid.  The study was performed by Duke Energy and Siemens and delivered charging information to mobile phones, tablets, and computers, enabling EV drivers to schedule charging based on the anticipated costs given the varying rates at different times of the day.

Siemens delivered electricity rate information via its computing cloud using the OpenADR demand response protocol, which enables energy-consuming devices (including charging stations) to respond to grid conditions.  The Society of Automotive Engineers (SAE) has established many standards for communications between charging stations and EVs; others, including the CEA-2045 modular communications interface standard, enable communications between charging stations with smart meters and home networking devices.

A Bad Connection

Meanwhile, in December, the U.S. Department of Energy published a report summarizing six projects related to EV charging that were funded in 2009 as part of the American Recovery and Reinvestment Act.  Entitled Evaluating Electric Vehicle Charging Impacts and Customer Charging Behaviors, the report states that when provided with discounted overnight rates for EV charging, consumers will adapt their charging habits.  “Customers took advantage of time-based rates to save on overnight residential charging” when they were able to pre-program charging, according to the report.  Convenience in managing charging is viewed as essential to minimize the cost of EV charging.

The report also points out that work needs to continue on connecting EV chargers with smart grid devices.  The Sacramento Municipal Utility District (SMUD), which was one of the six utilities managing the projects, found that charging equipment “successfully connected to SMUD meters about 50% of the time for several reasons, including poor ZigBee radio signal quality (often range related), problems with power supply circuits in the EVSE [electric vehicle supply equipment] communications module packet loss recovery, and environmental interference.”

Simplifying and reducing the cost of EV charging is critical to convincing more consumers to opt for EVs over conventional vehicles –  especially when prices at the pump are low.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Clean Transportation","path":"\/tag\/clean-transportation?page=3","date":"3\/2\/2015"}