Navigant Research Blog

Energy Storage Leaders Stumbled, Then Survived

— March 20, 2015

At a time when the major electric industry players were either unwilling or not nimble enough to develop energy storage systems integration expertise, four growing energy storage players with four distinct technologies took a risk to develop this expertise. Over the last few years, each of these companies failed financially and was subsequently acquired, in some cases more than once. In nearly every case, private equity firms stepped in, seeing an opportunity to invest in a maturing technology company with specialized expertise in the market.

Citing Tesla founder Elon Musk’s determination to build a massive Gigafactory to manufacture batteries for his vehicles, E Source Senior Fellow Jay Stein has argued that company failures like these indicate the shortcomings of the overall market. This is a logical fallacy.

Number of Deployed Systems Market Share by Top 10 System Integrators, Excluding Pumped Storage and CAES, World Markets: 1Q 2015

(Source: Navigant Research)

Detours Behind

The chart above is derived from Navigant Research’s Energy Storage Tracker 1Q 15, a global database of energy storage installations that includes 808 projects. This specific graph charts the top 10 systems integrators of energy storage in terms of number of systems deployed globally. Four of the 10 market leaders for systems integration have gone bankrupt and been acquired in the past several years. NEC Energy Solutions, formerly A123 Energy Solutions, was acquired following a bankruptcy filing, and the grid business was subsequently spun off and sold to NEC Corporation for approximately $100 million in 2014. Beacon Power was acquired by a private equity firm following a bankruptcy filing in 2012, and Xtreme Power (now Younicos Inc.) was acquired by Younicos AG in 2014, also after filing for bankruptcy.

All three firms were focused on a core grid storage technology (lithium ion batteries, flywheels, and advanced lead-acid batteries, respectively), but all spent a great deal of resources in the earlier days of the market learning how to integrate complete systems. Ultimately, all three firms developed this expertise, and NEC Energy Solutions and Younicos repositioned themselves as systems integration companies, offering software, controls, and integration expertise as opposed to pure-play battery suppliers. Beacon Power is a market leader in flywheels and flywheel systems integration and has developed a modular flywheel product with built-in power electronics for simpler integration and installation.

Managers, Not Markets

Finally, Coda Energy repositioned itself as an energy storage integration firm in 2013 after filing for bankruptcy. The company rebranded and shifted its product offering to target stationary energy storage using a battery management system, battery thermal management, and a sophisticated power source controller.

Together, these four companies account for 21% of the global market share for the top 10 systems integrators (although part of this market share is attributed to Younicos AG). These companies and others like them are challenging incumbents such as ABB and S&C Electric, demonstrating that their earlier stumbles arose out of flawed management and/or strategy, not failed markets or futile technologies.

Equating a management failure with a market failure ignores the value of the technology. Whether the Gigafactory will be Musk’s Waterloo or Austerlitz has less to do with the technology and much more to do with Tesla’s strategy and execution—and Musk has proven he can accomplish both in the automotive and the financial services worlds.

 

Volvo Pioneers Autonomous Vehicles

— March 17, 2015

Volvo has long sold cars that are considered among the safest in the world. Since the 1940s, Volvo has been at the forefront of introducing innovations that include laminated safety glass, crush zones, three-point seatbelts, and more recently, pedestrian detection with automatic braking. As Volvo prepares to launch its first all-new production vehicle since being acquired by China’s Geely Group, the company has announced plans for a test of highly automated vehicles on public roads near its Gothenburg, Sweden headquarters.

Self-Driving Cars a Reality

Self-driving vehicles from automakers, suppliers, and technology companies have become commonplace recently on Silicon Valley roads. However, all of those vehicles are under the control of the engineers trying to refine the complex control software required to make them work reliably. Beginning in 2017, Volvo plans to put a fleet of 100 autopilot-equipped XC90 SUVs into the hands of regular Swedish drivers.

Reiterating its oft-stated goal of achieving sustainable mobility and a crash-free future, Volvo has worked to design the autopilot system it is building into the XC90 to be robust enough to let ordinary drivers give  complete control.

“Making this complex system 99% reliable is not good enough, you need to get much closer to 100% before you can let self-driving cars mix with other road users in real-life traffic,” Erik Coelingh, technical specialist at Volvo, told me. With that in mind, Volvo has recognized the limitations of current technology, so the XC90 will be equipped with a combined array of radar, lidar, ultrasonic, and camera sensors.

Sensor Array on Autonomous Volvo XC90

(Source: Volvo)

Coelingh acknowledges that there are some fundamental problems that cannot be overcome. For example, lidar sensors cannot see through fog or rain and cameras cannot see lane markers that are obscured by snow. In addition to using multiple sensor types, Volvo is taking care in packaging the sensors to minimize the risk of obstruction from the elements such as snow and salt buildup.

The goal is to allow drivers to spend time on secondary tasks without constantly monitoring the system. The vehicles will be able to execute automatic lane changes and enter and exit a limited access highway. Soft degradation of the system will extend the time between the driver being alerted and when they have to take over. If the driver does not respond by taking over control in a timely manner, the vehicle will attempt to pull over and come to a safe stop.

Fully Autonomous vs. Self-Driving

Despite all of that, there is an important distinction between vehicles that are capable of fully autonomous operation and those that are entirely self-driving. The Volvo falls into the former category, with the ability to handle the driving when conditions permit, while reverting to human control in many scenarios. Google’s prototype pod car, which was designed without a steering wheel or pedals, is in the latter category. For the foreseeable future, driverless vehicles are likely to remain restricted to closed environments where they don’t need to interact with traditional vehicles.

As detailed in Navigant Research’s report, Autonomous Vehicles, 40% of new vehicles will have some form of automated driving capability by 2030. The bulk of those are likely to be similar in concept to what Volvo will be testing on Swedish roads in 2017. Although consumer surveys have indicated strong interest in autonomous vehicles, it’s too early to tell how much of that interest will be retained as consumers become aware of the real-world limitations of autonomous technology. Volvo’s test program in Sweden might give the first real feedback on this topic.

 

E-Motorcycles and E-Scooters Primed for Acceleration

— March 17, 2015

Innovative product offerings, large new market entrants, and decreasing battery prices are all contributing to an increasingly positive outlook for the electric power two-wheel vehicle industry, which includes electric scooters (e-scooters) and electric motorcycles (e-motorcycles).

An influx of new product offerings and services in these markets is expanding the product options for consumers, offering legitimate alternatives to car ownership, and appealing to new, untapped customer bases. These products and services include fold-up e-scooters, hydrogen fuel cell scooters, e-scooter sharing programs (Scoot Networks), e-scooter battery swapping networks (Gogoro), and ultra-lightweight e-motorcycles.

Warming Up

In the e-motorcycle industry, several large manufacturers traditionally focused on gasoline-powered motorcycles are entering the market and providing new capabilities. These large companies bring brand recognition, extensive dealer networks, industry credibility, and large marketing and R&D budgets. It’s difficult to convince consumers to buy unknown brands in a new market, especially at higher price points compared to internal combustion engine (ICE) motorcycles.

With Polaris Industries acquiring Brammo in early 2015, Yamaha announcing its intention to enter the market in 2016, and Harley-Davidson expected to release its LiveWire product around the 2018 timeframe, the e-motorcycle industry is poised to undergo significant growth and significantly increase consumer awareness and recognition over the coming years. Lithium ion (Li-ion) battery units that would have cost more than $1,000 per kilowatt-hour (kWh) just a few years ago can now be had for about one-third of the price, and these costs are expected to continue to decline over the coming years.

According to Navigant Research’s recently published report, Electric Motorcycles and Scooters, worldwide sales of e-motorcycles and e-scooters are expected to grow from 5.2 million units in 2015 to just under 6 million units by 2024. Due to the new and expected market entries of Polaris Industries, Yamaha, and Harley-Davidson into the North American and European markets, high-powered e-motorcycles (more than 30 kW/40 hp peak) are expected to achieve by far the largest growth of any segment in this market, growing at a compound annual rate of 35.2% between 2015 and 2024.

E-Scooter and E-Motorcycle Sales by Type, World Markets: 2015-2024

(Source: Navigant Research)

 

The New Volt: More Hybrid & More Electric

— March 9, 2015

In a somewhat ironic twist on the original and short-lived advertising tagline for the Chevrolet Volt, when the all-new second-generation Volt goes on sale this summer, it will be both more hybrid and more electric. When the first Volts arrived at dealerships in December 2010, Chevrolet promoted the extended range electric vehicle (EV) with the line “It’s more car than electric.”

That ill-conceived phrase was intended to communicate to consumers that the Volt would function just like any other car, without the range anxiety issues associated with plug-in battery-powered cars. However, the campaign came on the heels of a PR snafu during the media launch, when it became known that under certain operating conditions, the Volt functioned like other hybrid vehicles, sending a blend of torque from the electric motors and the engine directly to the wheels. Throughout the development of the Volt, General Motors (GM) had insisted that Volt wasn’t just a Prius-like hybrid but an electric car with an engine running a generator to provide juice when the battery was depleted. Within a few months, the much-criticized ad campaign was abandoned.

More Alike

When GM CEO Mary Barra revealed the 2016 Volt at the North American International Auto Show in January, she announced that the vehicle’s electric driving range would go up 30% to 50 miles and that range-extending fuel economy was expected to hit 41 mpg, an increase of more than 10% from the 2015 model. Since then, some additional details have been revealed about how the new Volt actually works, and it turns out that part of the mileage boost is achieved by making the electric drive unit work more like other hybrid vehicles.

The original Volt drive unit used two motor-generators, one planetary gearset, and two clutches to provide four different operating modes. In three of those modes, only electric power was sent to the wheels, with the higher-speed, range-extended mode supplemented by engine power, because it actually helped improve overall efficiency. The new drive unit is actually more mechanically complex than the original, although improved integration has enabled GM engineers to reduce the weight by about 100 pounds. In addition to the two motor-generators, the unit now has two planetary gearsets and a third clutch that together enable five operating modes. The new Volt also has three extended-range modes, each of which sends engine torque to the drive wheels in combination with torque from one or both motors.

At the Peak

During its gestation, the original Volt triggered a great deal of controversy among both engineers and the political class. Within months of the debut of the original concept, Toyota proclaimed that the Volt’s series hybrid layout was inferior to the parallel power-split configuration of the Prius. It now appears that GM engineers agree with that assessment. The somewhat more complex mechanism of the new Volt is closer to the way in which Toyota, Ford, and even GM’s discontinued two-mode hybrid systems work. The three hybrid modes provide the controls engineers with greater flexibility to keep the new, more powerful engine in the new Volt operating closer to its peak efficiency at all times while still providing improved performance of the old model.

Until the United States Environmental Protection Agency certifies the results sometime this summer, GM is only able to provide projections of the new Volt’s electric driving range and fuel economy. However, data collected through OnStar indicates that approximately 80% of the trips made with the 73,000 Volts sold in the last 4 years were done on electricity alone. With the electric range projected to go from 38 miles to 50 miles, Volt engineers expect drivers of the new model to complete 90% of trips without burning any gasoline, making it significantly more electric as well as more hybrid when the battery has been run down.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Clean Transportation","path":"\/tag\/clean-transportation?page=5","date":"5\/23\/2015"}