Navigant Research Blog

Severe Drought Hastens Hydropower’s Slow Decline

— November 4, 2014

Coal retirements, the shale gas bonanza, post-Fukushima nuclear curtailments, the rising adoption of distributed generation, and emerging price parity for solar PV and wind – the dynamic changes impacting electricity grids worldwide are many.  Now, with prolonged droughts affecting leading global economies, like Brazil and California (the world’s seventh and eighth largest economies by gross domestic product [GDP], respectively), a slow decline in the prominence of hydropower is in the mix.

Historically, hydropower has been the primary source of clean and renewable energy in both economies.  Its decline has had a more severe impact on Brazil’s grid, but in both places, this development is expected to continue to coincide with a further rise in gas-fired generation and renewables.  Due to the current cost of renewables, the consequences of this shift may be a rise in greenhouse gas emissions in each country’s electric power sector.

California Copes

With a fleet of 300 dams, California is among the nation’s leaders in hydropower generation.  However, hydro in the state has declined from peaks in the 1950s, when it was responsible for more than half of the state’s generation mix, to just 9% in 2013.  Having prepared for hydro’s decline by broadening its generation mix over the last several decades, the California grid remains mostly insulated from the worst effects of nearly a half decade of severe drought.

California generates around 55% to 60% of its power from natural gas and has seen a 30% increase in gas-fired generation since 2002.  Meanwhile, California’s leading investor-owned utilities across the state – Pacific Gas & Electric (PG&E), Southern California Edison (SCE), and San Diego Gas & Electric (SDG&E) – are on track to meet or exceed their 33% renewable procurement obligations by 2020 under the state’s Renewable Portfolio Standard (RPS) policy.

Brazil Gasps

Facing its worst drought in 40 years, meanwhile, Brazil has been more severely affected by reduced hydropower generation than California.  Currently, the second leading producer of hydroelectric power in the world, trailing only China, Brazil relies on hydro for more than three-fourths of its generation.  According to data published by BP earlier this year, hydropower consumption fell 7% in 2013.

This rapid decline has prompted severe rationing in 19 cities, undermined hydropower generation, and resulted in blackouts across the country.  In the run up to the 2014 World Cup, the Brazilian government provided more than $5 billion to subsidize electric utilities, replacing lost hydroelectric generation with fossil fuel-fired generation, including large amounts of liquefied natural gas.  While this helped stabilize the grid during the event, it has nearly doubled greenhouse gas emissions from the power sector.

Brazil’s experience provides a harsh lesson for drought-stricken areas with a high dependence on hydropower.  While natural gas is a low-carbon alternative relative to coal-based generation, it may stall or reverse carbon mitigation efforts when used in place of hydropower.  Renewables can help make up the difference, but even with sharp declines in the price of solar PV and wind, they remain far more expensive than hydropower or natural gas.  While both California and Brazil are in a hole with respect to water supply and hydroelectric generation, persistent drought is unlikely to result in a significant increase in new renewables spending without the introduction of new subsidies.


Bill Gates: How to Fund Energy Miracles

— August 21, 2014

Through the Gates Foundation, Bill Gates has taken a stand on improving global public health, investing in programs focused on basic advances such as developing a next-generation condom to prevent the spread of sexually transmitted diseases, creating a standalone vaccine cooler for communities that are stranded without electricity, and inventing a toilet that can solve sanitation issues by pyrolizing human refuse into something more usable (using solar power, no less).  Meanwhile, Gates is also challenging U.S. energy policymakers and their funding practices for energy R&D.

In a June blog post titled “We Need Energy Miracles,” Gates called for the United States to look hard at R&D allocations, potentially redirecting funding from the military and healthcare sectors toward energy research and pilot projects (presumably renewable ones).  Given the imperfections (intermittency, inefficiency) of existing renewable resources, Gates argued, this research is necessary to establish an equitable energy mix, both in the United States and abroad – especially in developing nations that must increase energy use to grow their economies.  He stressed the need to invest in projects that are “high risk/high reward” in order to achieve the sort of miracle needed to support growing demand and limit climate change.

Memo to Bill: DIY

Responding to Gates, Solar Wakeup (republished by Clean Technica) noted that Gates has been active in investing in energy storage with Aquion and LightSail but challenged him to be the major financer of the next energy miracle.  Why?  Simply put, it’s unreasonable to expect increased investments (private and public) in risk-agnostic energy R&D, and if one of the world’s richest men wants it to get done, he should do it himself.  Payoffs are slow for energy projects, the uncertainties many: macroeconomic conditions, volatile energy and resource markets, policy reversals, infrastructure needs, and high operating and maintenance costs.  Solar Wakeup’s challenge is based in reality.

But the cleantech and renewable energy sectors are already substantial in countries all over the world, and growth is accelerating.  China has recognized this.  In recent years, China’s public and private investments in cleantech, both at home and abroad, have explodedReports by Azure International explore the drivers for increasing investment in cleantech in China.  Risk is inherent in investors’ strategies for expanding their energy-related portfolios, and intangible values, such as technological and innovative prestige, sometimes compete with return on investment (ROI).  Encouraged by the government, Chinese investors have become increasingly willing to fund energy efficiency and conservation projects such as smart grids and smart buildings.

The topic of investment in renewables and smart grids is thorny, with many caveats and nuances that tend to shape the potential for ROI – but it’s safe to say that with China’s example, maybe Gates has a point in his stance against being risk-averse toward investing in potential energy miracles.


In Bangladesh, Solar Boom Benefits All

— August 18, 2014

More solar PV systems are installed in Bangladesh than in Germany and the United States combined.  At the end of 2013, Bangladesh had an estimated 2.9 million solar PV systems installed compared to 1.4 million in Germany and 445,000 in the United States.

This is despite the fact that Bangladesh is one of the poorest countries on the planet, with per-capita income of less than $3,000 per year.  In Bangladesh, solar home systems (SHSs) range from 10W to 200W.  Approximately 50% of all systems sold in Bangladesh are between 20W and 30W – roughly 1% of the capacity of a medium-sized residential system in the United States, but enough to power a few compact fluorescent or LED lights, charge a cell phone, or power a radio.  At an average cost of about $230 for a 20W SHS in Bangladesh, an upfront cash payment is out of reach for people who make less than $9 per day.  But thanks to the success of micro-credit programs that made Mohamad Yunus and Grameen Bank household names, SHSs are affordable to all.

Home Systems Multiply

Grameen Shakti, based in Dhaka, is the solar power arm of the Grameen Bank and is the leading SHS installer in Bangladesh, with an estimated 1.3 million installations to date.  These installations represent more than 30 MW of installed capacity.   The model relies on an extensive network of sales agents who can reach remote areas, low interest loans, and numerous grants that provide seed funding.  Grameen Shakti provides free operation and maintenance services for 3 years after installation, with low-cost service options thereafter.

With a strong emphasis on grassroots education, Grameen Shakti has contributed to the industry’s high visibility in Bangladesh, where there are now around 40 providers of SHSs.   The company sells approximately 1000 SHSs per day and is targeting 2 million SHS sales by the end of 2016.

The government of Bangladesh – whose low-lying topography makes it especially vulnerable to the effects of climate change – has set a target of generating 5% of its power from renewable energy sources by 2015 and 10% by 2020.  The pipeline of projects started small, but is now growing considerably.  The country has approximately 10 GW installed capacity, with only 75% of that power actually available at any given time due to grid reliability issues.  That relates to roughly 136 kWh available per capita each year – one of the lowest rates in the world.  Compare that to an average household consumption of 1000 kWh per month here in Portland, Oregon.

Changing the Model

Rahimafrooz Renewable Energy Ltd. (RREL) represents the growing number of hybrid companies with a foot in the SHS market and many others, including agriculture, healthcare, education, telecommunications, rural street lighting, and marketplaces, as well as government and private institutions.  RREL has installed 300 solar water and irrigation pumps, 2 MW of solar rooftop solutions, and more than 100 solar-powered telecom base stations in Bangladesh.

Meanwhile, the company’s not-for-profit venture, Rural Services Foundation (RSF), has disseminated nearly 426,000 SHSs under the Infrastructure Development Co. Ltd. (IDCOL) program, representing more than an estimated 12 MW at the end of 2013.  This makes it the second-largest SHS installer in Bangladesh, behind Grameen Shakti.

As I’ve covered previously in blogs and Navigant Research’s report, Solar PV Consumer Products, countries such as Bangladesh, Kenya, Tanzania, and others are challenging traditional Western perceptions of developing countries and approaches for tackling poverty.   Investors have also taken notice.  Solar’s very favorable current market forces (low cost) and unique advantages in economic development (health benefits and cost savings) can be leveraged to enable the continued expansion of solar PV to even the most remote regions – and the poorest countries.


Preparing for the Worst, Cities Seek Resilience

— August 7, 2014

The Rockefeller Foundation is asking cities to apply for the latest phase of its 100 Resilient Cities Centennial Challenge.  This challenge aims to enable 100 cities to better address the shocks and stresses of the 21st century.  The selected cities receive support from the Rockefeller Foundation to create and implement resilience plans and to hire chief resilience officers (CROs) to oversee strategies.  Thirty-two cities – including, for example, Bangkok, New Orleans, Durban, Mexico City, and Rotterdam – were selected in the first phase of the competition.  San Francisco appointed the first CRO in April 2014.

The Intergovernmental Panel on Climate Change’s 2014 report on the impacts of global climate change highlights the particular vulnerability of urban infrastructures.  The impact of climate change on cities can take many forms – including increased temperature, drought, and storms – but the most direct threat comes from rising sea levels.  Approximately 360 million urban residents live in coastal areas less than 10 meters above sea level.  China alone has more than 78 million people living in vulnerable, low elevation cities.  Miami, New York City, and Tokyo are also among the top 20 cities at the highest risk of coastal flooding, along with Asian megacities such as Mumbai, Shanghai, Bangkok, and Dhaka.   The 2011 Tohoku earthquake and tsunami in Japan and Hurricane Sandy off the East Coast of the United States in 2012 demonstrated how even the most advanced cities can be devastated by extreme events.

After the Flood

The threat to American cities is further emphasized in the Third National Climate Assessment from the U.S.  Global Change Research ProgramMiami, in particular, is developing into a test case for the impact of the climate changes on U.S. cities and the ability of civic and business leaders to collaborate in response.

Resilience can be characterized as the ability of cities and communities to bounce back from catastrophic events, as well as respond to more gradual changes that threaten well-being or economic stability.  Resilience is not just a question of identifying and acting on specific climate change impacts; it also requires an assessment of each city’s complex and interconnected infrastructure and institutional systems.   New York, for example, initiated a major study of the how the city’s infrastructure and services can be better designed to cope with events like Hurricane Sandy – including more resilient, distributed energy grids and new approaches to land use policy in flood-prone areas.

Urban Sensitivities

Resilience is also a driver for new technology adoption.  The Sensing City project in Christchurch, New Zealand is an interesting test case for how smart city technologies can support resilience planning.  Christchurch was devastated by an earthquake in 2011 that left 185 people dead; the rebuilding project is estimated to eventually cost around NZ$40 billion ($35 million) in total.  The aim of Sensing City is to use sensor technologies and data analytics, including smartphones and sensors embedded in new construction, to lay the foundation for a healthier, more sustainable, and more resilient city.

Coping with the threats and uncertainties of the 21st century will require a deeper understanding of the normal operations of a city and its vulnerabilities.  That’s why resilience is becoming one of the key attributes of any smart city and a significant driver for the smart city market.


Blog Articles

Most Recent

By Date


Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author

{"userID":"","pageName":"Climate Change","path":"\/tag\/climate-change","date":"11\/27\/2014"}