Navigant Research Blog

In the Islands, Renewable Energy Scales up Rapidly

— July 22, 2014

Renewable energy project developers are touring islands these days, salivating at the opportunity to displace diesel-powered electricity systems that can cost as much as $1/kWh with significantly lower-cost clean power.  Prominent examples include Iceland, where, according to the country’s National Energy Authority, roughly 84% of primary energy use comes from indigenous renewable energy sources (the majority from geothermal); Hawaii, where energy costs are 10% of the state’s GDP, and where the state government has set a goal of reaching 70% clean energy by 2030; and Scotland (part of a larger island), with a goal of 100% renewable energy by 2020.  Several smaller, equally interesting island electrification initiatives present great opportunities for companies looking for renewable energy deployment opportunities that are truly cost-effective for customers and developers.

These opportunities include:

  • In Equatorial Guinea, a 5 MW solar microgrid planned for Annobon, an island with 5,000 inhabitants off the west coast of Africa, is intended to supply 100% of the power for residential needs.  The project is funded by the national government with power produced at a rate 30% cheaper than diesel, the current primary fuel source.  The project is scheduled for completion in 2015 and is being installed through a partnership between Princeton Power Systems, GE Power & Water, and MAECI Solar.
  • The Danish island of Samsø is the first net zero carbon island, where 34 MW of wind power generate more electricity than is consumed on the island.  Fossil fuels are still utilized, so  Samsø is not truly a 100% renewable energy island as often reported.  The project was conceived and designed as part of a 10-year process begun in 1997, following the Kyoto climate meeting in Japan.
  • The island of Tokelau, an atoll in the South Pacific, is home to 1,500 inhabitants and produces up to 150% of its electrical needs with solar PV, coconut biofuel-powered generators, and battery storage – displacing 2,000 barrels of diesel per year and $1 million in fuel costs.
  • El Hierro, the westernmost of Spain’s Canary Islands, is home to 10,000 residents.  With an innovative combination of wind power and pumped hydro acting in tandem, the island is projected to generate up to 3 times its basic energy needs.  Excess power will be used to desalinate water at the island’s three desalination plants, delivering 3 million gallons of fresh water per day.
  • The Clinton Global Initiative has a specific Diesel Replacement Program for islands, focused on deploying renewable energy projects and strategies tailored to the unique needs of its 20 island government partners.  The objective is not only to create cost-effective solutions to reduce carbon, but also to help many of these island nations reduce the often enormous debt that results from relying on imported diesel fuel for electricity.

There are many more opportunities, including Crete, Madeira, Bonaire, La Reunion, the U.S Virgin Islands, and the Philippines (7,127 islands) – which last summer set a 100% renewable energy target within 10 years.

Not all of these projects, particularly the more sophisticated ones, have gone smoothly.  The logistical challenges of island construction add to the overall cost of the projects.  The risk of extreme tropical weather events is always present, including the risk of actually being underwater if sea levels rise as anticipated.  Thus far, financing for many of these projects has come from public-private partnerships, and as I’ve written previously, the coming avalanche of adaptation funding means those avenues are expected to be around for the foreseeable future.  But given the strong economic arguments for residential systems, resorts, agriculture, and other energy-intensive applications that often rely on diesel power for electricity, onsite distributed projects often pencil out without public assistance.

 

Emissions Reduction Efforts Gather Steam

— July 2, 2014

Over the past month, worldwide efforts to reduce global carbon emissions have intensified.  On June 2, the U.S. Environmental Protection Agency (EPA) released a proposal to cut emissions using state-by-state targets (read more on the proposed rule and its implications in previous blogs by my colleagues Brett Feldman and Ryan Citron).  As states begin to explore different compliance options, regional cap-and-trade programs, such as the Northeast’s Regional Greenhouse Gas Initiative (RGGI), have gained traction.  Outside of the United States, The World Bank recently reported that more than 60 carbon pricing systems are either operational or in development worldwide.

Cap-and-Trade Considerations

Despite opposition to the EPA’s proposed rule, some states have already begun to embrace the change by exploring a variety of compliance options.   Washington state and Pennsylvania, among others, see cap-and-trade as a possibility to achieve their state’s target for emissions cuts.  John Podesta, a senior adviser to President Obama, told the Financial Times that a market-based solution to achieve emissions cuts would be “the most cost-effective way that states might come together to get the reductions that will be required.”  Many Democratic governors have already indicated that they will draw on the success of the RGGI and California’s statewide market to achieve compliance with the new targets.

Not to be outdone, the National Development and Reform Commission (NDRC) of China laid out plans to establish a national carbon market starting in 2018.  If it comes to fruition, the national model will take into account outcomes from seven regional pilot programs that launched in 2014 (the last of which was scheduled to launch in June).  The pilot schemes, scheduled for evaluation in 2016, cover around one-third of China’s gross domestic product and one-fifth of its energy use.  If successful, these programs will not only shape the development of a national carbon market, but also help meet the national goal to reduce carbon intensity by 40% to 45% by 2020 from 2005 levels.

Is a U.S. Carbon Market Realistic?

Realistically, such legislation would be extremely unlikely in the immediate future.  National cap-and-trade legislation has failed on several occasions since President Obama took office, with opponents citing economic harm as the primary concern.  However, if China implements a national carbon market that achieves economical emissions cuts, it could provide the impetus to spur federal legislation in the United States.  Additionally, with the United Nations Climate Summit approaching in September, progress from United States and China may help further global efforts to curb emissions.

 

Business Community Wakes to Climate Change Risks

— June 27, 2014

Attempting to reframe the climate change debate in terms of profit and loss, instead of politics, a bipartisan group of business and political leaders has released a report that says the United States faces billions of dollars in economic losses due to global warming.  Titled Risky Business: The Economic Risks of Climate Change in the United States, the study was produced by the Rhodium Group, an economic research firm, in association with a committee headed by former Treasury Secretary Hank Paulson, former New York City Mayor Michael Bloomberg, and Tom Steyer, the billionaire former hedge fund manager who has devoted his fortune to the effort to limit climate change.

Essentially, Risky Business makes the point, through an exhaustive database of the probable economic downsides of rising seas, drought, higher temperatures, and crop failures, that regardless of politics, it is irresponsible to ignore the risks of climate change – especially if you’re a businessperson, investor, or money manager.  With its high-powered lineup of Republican and Democratic financial heavyweights, Risky Business is the latest signal that the business community is awakening to the grave consequences of ignoring anthropogenic climate change, even as political leaders fail to act.

Ignored Rule

“Viewing climate change in terms of risk assessment and risk management makes clear to me that taking a cautiously conservative stance — that is, waiting for more information before acting — is actually taking a very radical risk,” wrote Paulson in a New York Times essay earlier this week.

In 2010, the U.S. Securities and Exchange Commission (SEC) established a rule requiring publicly traded companies to divulge their exposure to climate change risks in their reporting.  That rule has mostly been observed in the breach.  A February study by the Ceres Group, a Boston non-profit that looks at the financial implications of climate change, reported that, “A large number of companies fail to say anything about climate change in their 10-K filings. Forty-one percent of S&P 500 companies failed to address climate change in their 2013 filing.”

That is changing, as business leaders, driven by regulators and shareholders, have started to factor in likely climate-related effects on their businesses.  Large investors, meanwhile, have started to punish companies that produce or continue to rely on fossil fuels.  The announcement by Stanford University in May that it would eliminate fossil fuel investments from its $18.7 billion endowment portfolio is the most significant victory to date of the divestment movement.

Popping Sound

In an update to its 2011 report, Unburnable Carbon, the Carbon Tracker Initiative calculated that only 20% to 40% of the total listed reserves of the world’s fossil fuel companies can be burned if the world is to avoid catastrophic climate change.  Current fossil fuel company valuations represent a carbon bubble.  Eventually, the initiative stated, some form of price will be put on the carbon represented by those reserves, dramatically reducing their value.

“The scale of this carbon budget deficit poses a major risk for investors,” wrote the report’s authors, Jeremy Leggett and Mark Campanale.  “They need to understand that 60-80 percent of coal, oil and gas reserves of listed firms are unburnable … Capital spent on finding and developing more reserves is largely wasted. To minimize the risks for investors and savers, capital needs to be redirected away from high-carbon options.”

Politicians have utterly failed to come to grips with the environmental crisis of climate change.  Now, by framing it as an economic crisis, the business community is having a go.

 

Silicon Valley Tackles the Energy-Water Nexus

— June 18, 2014

No two systems in the built environment are more tightly linked than energy and water.  It’s hard to identify a pathway of conversion, conveyance, and utility of energy and water that does not touch the other system in one way or another.  This is commonly referred to as the energy-water nexus.  A recent Navigant Research report, Smart Water Networks, touched on this topic, in the context of water network innovations and their link to recent changes in the smart grid.

A recent blog by my colleague Eric Woods emphasized the future trends in water at a global scale.  According to the United Nations, water demand will increase by 55% by 2050, with drastic increases in the manufacturing sector.  At the same time, more than 40% of the global population is projected to be living in areas of severe water stress through 2050.  On the energy side, energy consumption is set to grow as well.  According to the 2013 International Energy Outlook, world energy consumption will grow by 56% between 2010 and 2040, mostly in the developing world.

(Source: U.S. Energy Information Administration)

Stresses on the System

And where do energy and water meet?  For consumers, look no further than your daily shower or dishwasher.  Heating water consumes 7% of commercial and 12% of residential energy in the United States.  With common appliances, it’s clear that making them more water or energy efficient cascades to savings of the other resource.

Another clear linkage in the energy-water nexus is hydropower.  In 2010, 16.1% of the world’s energy was generated using hydropower, and four countries – Albania, Bhutan, Lesotho, and Paraguay – generated all of their power from this source.

Looking back upstream in both energy and water, the linkages are equally impressive.  15% of all water is used for the energy sector.  Conveyance or pumping consumes more than 3% of the world’s energy, and in California alone, 7.7% of energy is used for water infrastructure.  Both systems are under stress from increases in demand, as mentioned earlier, but also from droughts, energy scarcity, and in some regions, political vulnerability (virtually all major river systems pass through more than one country).

Open Water Dive

Industry is taking notice.

At a recent Silicon Valley Leadership Group Energy and Sustainability Summit, I moderated a panel on how the cleantech space is making strides to manage the energy-water nexus in California and globally.  Chris King from eMeter (a Siemens company) discussed the need for open water data, analogous to the Green Button initiative.   Cynthia Truelove of the Center for Collaborative Policy argued that the disruptive technology that has made Silicon Valley so successful should carry over into creating disruptive policy that enables joint energy-water regulation that accounts for carbon impacts.  David Koller, from the Coachella Valley Water District, chronicled a pilot study that enabled customers to drastically cut down on water by providing them with smart water meters and relevant feedback in their bills.  From Imagine H2O, a water startup accelerator, Scott Bryan identified how WaterSmart, a company in its portfolio, is demonstrating success at becoming the “Opower for water.”  Some utilities are achieving a 5% reduction in residential water use in 6 months.

The discussion highlighted the need for a concerted effort among industry, policymakers, and end users to tackle the multifaceted challenge of the energy-water nexus of the present and the future.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Energy Storage, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Utility Innovations

By Author


{"userID":"","pageName":"Climate Change","path":"\/tag\/climate-change","date":"7\/31\/2014"}