Navigant Research Blog

Look to Islands to Teach Us More about IoT

— January 16, 2018

Islands play an important role in the energy sector, and in other sectors. The Hawaiian Islands, for instance, have been a test bed for new technologies at scale, such as rooftop solar and energy storage systems, led by the Hawaiian Electric Company. The concept of islanding, where a distributed energy resource continues to provide power to a location that goes off the grid, has gained stature through the deployment of microgrids. And in the Internet of Things (IoT) realm, both Spain’s Balearic Islands and New Zealand have recently entered the picture as laboratories for IoT technologies.

Case Study: Balearic Islands

Officials in the Balearic Islands are promoting a system involving half a million sensors that will blanket the islands as part of a broad IoT project. The plans call for 50 IoT antennas that can support at least 50,000 sensors. The underlying network infrastructure is based on the emerging LoRa technology, a low power wireless standard for wide area networks that is well-suited for IoT applications.

Several applications for this IoT network are under discussion, from helping tourists identify uncrowded beaches to helping the elderly avoid getting lost. One of the pilot projects uses the network to monitor the availability of some 1,200 parking spaces in a lot at the Balearic Technology Innovation Park.

The Balearic experiment has attracted the attention of Google, which has supplied the local government with its own IoT platform. The online search giant has also brought in its partner Beeva, a Spanish consultancy, to help steer another pilot project that aims to optimize the use of boat moorings in the city of Pollença’s harbor.

Case Study: New Zealand

In New Zealand, similar efforts are underway in that island nation. Telecom carrier Spark is building its own LoRa IoT network, with plans to cover 70% of the population by the middle of 2018. Officials there envision the new network will support connectivity for traffic lights, waterways, and machinery. And they expect to provide such services at lower costs compared to existing infrastructure.

Will these new, island-tested IoT networks prove to be trend-setters? Perhaps. But there are competing IoT network technologies, of course—such as 5G, which has many people in the energy and automotive sectors excited about what it offers (see Navigant Research’s 5G and the Internet of Energy report for some details). No matter how these IoT networks turn out, it pays to keep an eye on the latest advances so one does not get stuck on a technology island.

 

What Falls Under the Broad Microgrid Umbrella?

— January 9, 2018

There is arguably one question that needs to be answered by the customer thinking about microgrids: What do they really want in terms of a power supply solution? If the customer can quantify what they are seeking in terms of dollars saved, efficiency gains, or perhaps a reduction in downtime, then the solutions provider can design a system to meet those goals (whether that system meets the definition of a microgrid or not).

The question of whether you need a microgrid will be determined by different ownership models, geographies, and regulatory systems. Take the case of Duke Energy, a large vertically integrated utility serving customers in multiple US states. It views microgrids very differently than a third-party vendor focused on off-grid applications in the developing world.

Grid or No Grid?

Duke Energy jumped into the microgrid market seeking to build a system with off-the-shelf parts. It succeeded, but learned quite a bit about integration challenges, which led to its efforts promoting interoperability standards. It has since followed a dual path on microgrids, leveraging both its unregulated businesses in partnership with Schneider Electric for a community microgrid under a microgrids as a service business model, but also rate-basing a new microgrid at a National Guard facility in Indiana. For Duke Energy, microgrids are about enhancing traditional grid infrastructure. They can serve as a vehicle to integrate diverse distributed energy resources into its own power grid under a “do no harm” paradigm.

For Optimal Power Solutions, an Australian-based firm active in overseas developing economy markets such as India, Indonesia, and Malaysia, the perspective on microgrids is vastly different. “The term microgrid may be the broadest church of all,” commented Stephen J. Phillips, company founder and a 20-year veteran of deploying off-grid solutions for village and remote commercial customers. He observed that the majority of the 1,800 systems Optimal Power Solutions has deployed were designed to displace diesel burning in remote parts of the world. Today, however, much of its work revolves around “essentially installing an off-grid system that is connected to a standard utility grid.” Case in point are several grid-connected solar PV plus energy storage projects in Japan, including the Nagoya landfill project, designed to make such hybrid systems dispatchable and time-shift stored solar energy after the sun sets.

Latest Regional Trends

The US is the top country in the world in terms of total identified capacity according to Navigant Research’s newly published 13th edition of the Microgrid Deployment Tracker. The US has 6,213.1 MW of capacity across 853 projects. China comes in second place, a country where verifying project data is the most difficult of all countries. Perhaps the biggest surprise, however, is that Saudi Arabia jumps in at 3rd place with the addition of the Saudi Aramco microgrid cluster, a 2.2 GW project at the Saudi Aramco gas-oil separation plant in Shaybah, Saudi Arabia from Schweitzer Engineering Laboratories. This microgrid (technically eight interconnected microgrids operated by a single controller) is likely the largest group of nested microgrids in the world and the largest single entry in the Tracker.

India and Australia round out the top five countries in terms of capacity (see Top 10 figure). Is the Saudi Aramco project really a microgrid? From a controls perspective, the answer is yes. I’ll leave it to others to debate whether there should be a size limit on microgrids.

Top 10 Countries by Total Microgrid Power Capacity, World Markets: 4Q 2017

(Source: Navigant Research)

 

Businesses Say Bring On IoT Regulations

— November 28, 2017

Most businesses do not seek new regulations from governments or regulatory agencies. They already have enough rules to play by. But when it comes to the Internet of Things (IoT), many take a different tack and are quite open to strong regulations since they are acutely aware of the many reported hacks or known vulnerabilities in things like webcams, baby monitors, and cardiac devices.

A new survey underscores this sentiment. 96% of business respondents saying there should be IoT security regulation, according to the study of 1,050 global IT and business decision makers conducted by Gemalto, a global digital security vendor based in the Netherlands.

Not only do business people see the need for enhanced IoT security, consumers do as well. The same Gemalto survey finds that 90% of consumer respondents (out of 10,500) believe there should be IoT security regulation. 65% of the same consumers are concerned about a hacker controlling their IoT devices.

Challenges Businesses Face

The leading challenge for companies trying to secure IoT products or services is the high cost of implementation (44%), according to the survey. That means companies either bite the bullet and invest in greater security for products or services or cut corners. The latter is obviously not a wise approach. It leaves customers too vulnerable to shoddy security in the IoT products or services they purchase. If spending remains a barrier, it could spell trouble for the emerging IoT market as a whole. With no baseline of security, IoT technology buyers will remain leery and unlikely to make purchases.

Another concern the study revealed is that only 6 out of 10 businesses encrypt all the data they capture or store via IoT devices. That means 4 out of 10 (or 40%) businesses do not, a major red flag. Not all data flowing from IoT devices is that valuable; the number of times someone turns on or off a connected light bulb is minor. But health records or personal financial details is another matter altogether.

Energy Sector Relatively Secure, So Far

So far, the energy sector has a fairly good record of thwarting attacks against devices, with some exceptions. Things like smart meters, substations, and other grid assets have remained safe for the most part. But there are many attempts to penetrate the grid, like earlier this year when nuclear facilities came under attack. Those attempts are likely to increase as more things connect to the grid through distributed energy resources and behind-the-meter devices like smart thermostats or EV chargers. Without stronger rules and incentives, the risks will rise significantly.

One can understand the desire for more stringent regulations for the IoT. The number of things connecting to the grid and other systems is growing exponentially, and so too the number of potential threats. A strong set of standards throughout the IoT value chain is needed to keep data, systems, and people safe. Strong rules will force vendors to devote the needed resources and money to make it happen sooner rather than later.

 

Five Key Smart Meter Markets to Watch

— June 27, 2017

The adoption of smart electric meters by utilities is part of a long-term technology transformation to create a more intelligent grid. While the rate of adoption will vary by region, over time, smart meters will become the norm. In the advanced metering infrastructure (AMI) landscape today, some countries already have nearly full penetration of smart meters (Finland, Italy, Sweden), some are in the middle of large-scale deployments (China, United States), and the remainder are just getting off the ground (Egypt, Malaysia, India). While this industry is in a constant state of change, taking a look at some of the more active markets can help paint a picture of what the future landscape may be. Navigant Research identifies five of these key markets and discusses why market players should be paying close attention.

China, Undisputed Leader in Smart Meter Installations

  • The country has installed over 400 million smart meters through its state-run utilities, State Grid Corporation of China (SGCC) and China Southern Power Grid (CSPG), since beginning the program in 2012. While SGCC will wind down its utilitywide deployment in 2018, CSPG just began commercial deployment in March 2016. Driven by a mix of new (CSPG) and upgraded projects (SGCC), the Chinese smart meter market is expected to continue generating billions in revenue. The interesting question now becomes whether project opportunities will be extended to non-domestic vendors as SGCC begins demanding more advanced replacement units.

United States, Late Adopters Drive Post-Smart Grid Investment Grant (SGIG) Activity

  • Significant market opportunities remain, as the US market reached just over 50% smart meter penetration at the end of 2016. The majority of these project opportunities will be at the cooperative or public utility level, opening the door for cloud computing and managed service providers. Additionally, proven use cases and lessons learned during the SGIG program should help mitigate some of the challenges realized during earlier deployments.

India, Largest Untapped Smart Meter Market in the World

  • While most public distribution companies are still in the pilot project stage, the country’s utilities and government have made clear their goals of installing 50 million smart meters over the next 4 years. Although Navigant Research forecasts a more conservative deployment schedule than current government estimates, robust growth is still expected as the Ministry of Power forms relationships with meter manufacturers and the price of meters falls as a result of high volume purchase orders.

Malaysia, Use Case May Help Support Growth in Southeast Asia

  • When completed, TNB’s nationwide smart meter deployment may be one of the largest of its kind in the world. This project and the utility are significant, with a consumer base of 9.2 million customers and an annual customer growth rate of nearly 4% (more than 300,000 new customers a year). A March 2017 Brand Finance report ranked TNB #24 of Global Top 50 Utility Brands (and the fastest growing).

Egypt, A Chance to Jump-Start the Nascent African Market

  • In August 2015, it was announced that the Ministry had actioned a plan to convert an existing 30 million electric meters to smart meters over a 10-year period; the primary drivers being incorrect meter readings and electricity theft prevention. This target has since been reduced to 20 million smart meters over the next 10 years. Africa needs these types of deployments to get off the ground before regional economies of scale and proven use cases can be realized.

More information can be found in the newly released Navigant Research report, Global AMI Tracker 2Q17, which provides an analysis of global utility smart meter projects.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Digital Utility Strategies, Electric Vehicles, Energy Technologies, Finance & Investing, Policy & Regulation, Renewable Energy, Smart Energy Program, Transportation Efficiencies, Utility Transformations

By Author


{"userID":"","pageName":"Connected Grid","path":"\/tag\/connected-grid","date":"5\/21\/2018"}