Navigant Research Blog

Denmark Aims for 100% Renewables by 2050

— April 3, 2012

For such a small country, Denmark certainly knows how to do sustainable energy in a big way.  Late last month the Danish Parliament passed the most ambitious renewable energy goal in the world.  By 2050, the country’s entire economy will be powered by renewable energy.  Given Denmark’s reliance on variable wind power, in order to accomplish this goal the smart grid will need to play an increasing role in aggregating and optimizing the country’s energy resources.

Already, Denmark obtains more than 25% of its electricity from wind power.  Under the new commitment from the Danish government, 35% of the country’s energy will come from renewable sources by 2020, with roughly half of that coming from wind power.  It’s important to note that this 100% renewable goal applies to Denmark’s entire energy supply, not just electricity, and therefore also includes heating, all industrial activity, and transportation.

One could clearly argue that Denmark is in a unique position due to its compact size and community-owned wind, combined, heat & power (CHP) and district heating and cooling networks, which provide a cultural ecosystem of support for sustainable energy strategies and stakeholder buy-in.  (One rarely hears of any NIMBY protests against wind power here!) The goal of 100% renewable energy is also matched with specific policies (and funding) attached to specific wind projects both onshore and offshore.

The country will, by necessity, lead the way with smart grid aggregation and optimization networks such as microgrids and virtual power plants (VPPs).  In order to accommodate larger penetrations of renewable energy, the Transmission System Operator (TSO) is redesigning its market dispatch rules accordingly.  Under the current system, only accepts power bids from power producers of at least 10 megawatts (MW) in size, and load forecasts are updated every 15 minutes.  Under the proposed new real-time market being rolled out, there will be no size limit on scheduled resources, and prices will be updated every five minutes, opening up the door to distributed energy resources – including demand response — that can respond quickly to price signals.

The country has laid the foundation for this new aggressive renewable energy policy by moving forward with trend-setting smart grid renewables integration projects rivaled only by Germany in terms of scale and ambition (my next blog post will cover Siemens and VPPs.)  In 2011, – with significant help from Spirae, an innovative software/hardware provider based in Colorado – completed a cutting edge R&D project with major ramifications for renewables integration: a 65MW VPP, commonly referred to as the “Cell Controller Project.”  It consists of distributed wind and CHP units owned by farmers and village heating districts, and will be operated by

This successful R&D experiment set the stage for an even more cutting edge VVP project of similar size (67 MW) that involves PHEV and residential heat pumps, along with wind and CHP on the Island of Bornholm – the European Union’s smart grid-renewable energy smart grid showcase.  Residents there are already receiving bill credits when the grid operator uses the batteries in plug-in hybrid electric vehicles (PHEVs) as short-term storage to help firm up wind power.

Also known as the “Bright Green City” project, this Bornholm VPP is being developed with DONG Energy with a goal of obtaining 76% of its total electricity from renewables by 2025, with 90 MW of wind power is planned to be added to the existing 30 MW in current operation.   An additional 5 MW of distributed solar PV is also on the drawing boards for Bornholm.   PHEVs are a key part of this greening of local infrastructure effort, leading some observers to come up with a new acronym:  an Electric Vehicle VPP or EV-VPP.   In a partnership to be launched in 2012 with the EV battery provider Better Place, DONG Energy hopes to roll out this EV-VPP throughout Europe.


Blog Articles

Most Recent

By Date


Building Innovations, Clean Transportation, Digital Utility Strategies, Electric Vehicles, Energy Technologies, Finance & Investing, Policy & Regulation, Renewable Energy, Transportation Efficiencies, Utility Transformations

By Author