Navigant Research Blog

European Grids Look to RF Mesh Networks

— July 23, 2014

Communications networks for smart grids have evolved very differently in Europe than they have in North America, with power line communications (PLC) and cellular technology, thus far, as the leading forms of communications for smart meter connectivity across the pond.  Here in the states, the availability of unlicensed (free) spectrum in the 900 MHz band has led to the leadership of proprietary radio frequency (RF) mesh solutions, such as those provided by Itron, Silver Spring Networks, Elster, Tantalus, Landis+Gyr, and others.

The European Commission, however, has taken steps in recent months to bring 48 European nations into alignment on spectrum policy across the continent.  Specifically, for smart meters and smart grid applications (and other machine-to-machine [M2M] applications), the European Conference of Postal and Telecommunications Administrations (CEPT) announced in February a framework whereby 5.6 MHz of spectrum, from 870 MHz to 875.6 MHz, will be set aside for unlicensed M2M uses, including smart meters and grids.  Details can be found in CEPT’s Electronic Communications Committee (ECC) Report 189.

Indoor Reading

CEPT cited several reasons for supporting interoperability, including the creation of economies of scale and cost reduction, reduction in the risk of cross-border interference, and greater flexibility.  The choice of sub-1 GHz spectrum, where propagation characteristics are stronger than at higher bands, makes the spectrum suitable for reading meters that may be placed indoors, even in basements — a common practice in European nations.

Ofcom, the United Kingdom’s telecommunications regulatory body, this year made amendments to its Wireless Telegraphy Act that allow for commercial operations on a license-exempt basis at 870 MHz to 876 MHz as of June 27, 2014; similar action is likely across the 48 nations that participate in CEPT.

This is good news for vendors, like those named above, but also for utilities across Europe seeking more flexibility in their smart meter and grid deployments.  RF mesh solutions are often less expensive than PLC for near area networks, although that varies widely depending upon the structure of the grid in the region as well as the topography.  Nonetheless, some smart meter/communications solutions providers have struggled financially over the past couple of years after ramp-up for American Recovery and Reinvestment Act (ARRA) funding created a spike in demand that has since fallen rather sharply.

Room to Grow

Europe is poised to be the next big growth area for smart metering, thanks to the EU’s 20-20-20 initiative, which a majority of European nations support.  Navigant Research estimates that current penetration of smart meters across Europe is just 15%, compared with more than 40% in North America.  While several nations have made significant progress in deployment (Italy, Scandinavia), Germany isn’t yet on board with the 20-20-20 initiative, and the United Kingdom and France are just getting rolling.  In Eastern Europe, there has been minimal activity to date, particularly in Russia, home to nearly 100 million meters.  For details on Navigant Research’s global smart meter forecast, look for our report Advanced Metering Infrastructure, slated for publication later this year.

The Market for Smart Meters, Europe: 2013-2023

(Source: Navigant Research)

Smart meter shipments in North America are expected to total 121 million between 2014 and 2023; that total is forecast to be 221 million in Europe.  That’s more than $18 billion in anticipated revenue for smart meters — a market of which surely every smart meter vendor will take note.

 

In the Islands, Renewable Energy Scales up Rapidly

— July 22, 2014

Renewable energy project developers are touring islands these days, salivating at the opportunity to displace diesel-powered electricity systems that can cost as much as $1/kWh with significantly lower-cost clean power.  Prominent examples include Iceland, where, according to the country’s National Energy Authority, roughly 84% of primary energy use comes from indigenous renewable energy sources (the majority from geothermal); Hawaii, where energy costs are 10% of the state’s GDP, and where the state government has set a goal of reaching 70% clean energy by 2030; and Scotland (part of a larger island), with a goal of 100% renewable energy by 2020.  Several smaller, equally interesting island electrification initiatives present great opportunities for companies looking for renewable energy deployment opportunities that are truly cost-effective for customers and developers.

These opportunities include:

  • In Equatorial Guinea, a 5 MW solar microgrid planned for Annobon, an island with 5,000 inhabitants off the west coast of Africa, is intended to supply 100% of the power for residential needs.  The project is funded by the national government with power produced at a rate 30% cheaper than diesel, the current primary fuel source.  The project is scheduled for completion in 2015 and is being installed through a partnership between Princeton Power Systems, GE Power & Water, and MAECI Solar.
  • The Danish island of Samsø is the first net zero carbon island, where 34 MW of wind power generate more electricity than is consumed on the island.  Fossil fuels are still utilized, so  Samsø is not truly a 100% renewable energy island as often reported.  The project was conceived and designed as part of a 10-year process begun in 1997, following the Kyoto climate meeting in Japan.
  • The island of Tokelau, an atoll in the South Pacific, is home to 1,500 inhabitants and produces up to 150% of its electrical needs with solar PV, coconut biofuel-powered generators, and battery storage – displacing 2,000 barrels of diesel per year and $1 million in fuel costs.
  • El Hierro, the westernmost of Spain’s Canary Islands, is home to 10,000 residents.  With an innovative combination of wind power and pumped hydro acting in tandem, the island is projected to generate up to 3 times its basic energy needs.  Excess power will be used to desalinate water at the island’s three desalination plants, delivering 3 million gallons of fresh water per day.
  • The Clinton Global Initiative has a specific Diesel Replacement Program for islands, focused on deploying renewable energy projects and strategies tailored to the unique needs of its 20 island government partners.  The objective is not only to create cost-effective solutions to reduce carbon, but also to help many of these island nations reduce the often enormous debt that results from relying on imported diesel fuel for electricity.

There are many more opportunities, including Crete, Madeira, Bonaire, La Reunion, the U.S Virgin Islands, and the Philippines (7,127 islands) – which last summer set a 100% renewable energy target within 10 years.

Not all of these projects, particularly the more sophisticated ones, have gone smoothly.  The logistical challenges of island construction add to the overall cost of the projects.  The risk of extreme tropical weather events is always present, including the risk of actually being underwater if sea levels rise as anticipated.  Thus far, financing for many of these projects has come from public-private partnerships, and as I’ve written previously, the coming avalanche of adaptation funding means those avenues are expected to be around for the foreseeable future.  But given the strong economic arguments for residential systems, resorts, agriculture, and other energy-intensive applications that often rely on diesel power for electricity, onsite distributed projects often pencil out without public assistance.

 

To Win, Utilities Must Play Offense as well as Defense

— July 10, 2014

Since I’m originally from the Netherlands and spent several years living in Brazil, the semifinal results of this week’s World Cup soccer (or football, as we Europeans call it) matches have been disappointing, to say the least.  One thing that’s clear from the tournament ‑ one of the most exciting World Cups in my memory, by the way ‑ is that to succeed at this level, teams must play well on both ends of the field: offense and defense.  The Netherlands squad, the Orange, played superb defense on Argentinean superstar Lionel Messi, but failed to muster a goal in 120 minutes of regular and extra time and lost on penalty kicks.  As for Brazil, it played neither offense nor defense.

The same is true for utilities in today’s rapidly transforming power sector.  Playing defense – by sticking with established ways of operating and traditional forms of customer service – is no longer enough to succeed.  Utilities must also play offense; they must proactively develop new capabilities and innovative business models to thrive in a world of proliferating distributed energy resources (DER), greater customer choice, and rising competition from new players.

A Shifting Landscape

Widespread coal plant retirements, stiff renewable portfolio standards in many U.S. states, and the spread of renewable generation are all irrevocably changing the mix of generation assets while increasing the need for load balancing and frequency regulation on the grid.  Navigant forecasts that cumulative solar capacity in the United States will reach nearly 70,000 MW – 60% of it distributed – by the end of 2020.

At the same time, the U.S. Environmental Protection Agency’s (EPA’s) proposed limits on CO2 emissions from existing power plants will drive further changes in the generation landscape.  These limits will bring new natural gas capacity online, put upward pressure on wholesale electricity prices, and make demand response and energy efficiency programs key parts of the answer.

(Source: Navigant Consulting)

Today’s centralized, one-way power system is quickly evolving into an energy cloud in which DER support multiple inputs and users, energy and information flows two ways across the system, and market structures and transactions grow more complex.  The energy cloud is more flexible, dynamic, and resilient than the traditional power grid, but it also brings new challenges to a power sector that until recently has changed little in its fundamental structure for almost a century.

Lead or Lose

Facing declining revenue as customers consume less and produce more of their own power, utilities are faced with large investments to build new transmission capacity, upgrade distribution systems, and invest in new DER businesses.  Given these challenges, utilities must be adept at playing offense and defense.  An updated defensive strategy will entail:

  • Engaging with customers and regulators to understand customer choices vis-à-vis price and reliability
  • Improving customer service and grid reliability at the lowest prices possible
  • Finding equitable ways to charge net metering customers for transmission and distribution services
  • Developing utility-owned renewable assets to appeal to environmentally conscious customers

Playing offense is even more important.  Utilities must:

  • Create new revenue streams through the development of new business models, products, and services
  • Transform their organizations and culture in order to fully integrate sales, customer service, and operations
  • Upgrade the grid and operations to facilitate the integration of DER

These objectives can only be accomplished by implementing new business models that include developing, owning, and operating DER such as rooftop solar, customer-sited storage, and home energy management systems; providing third-party financing for DER; and offering new products and services focused on energy efficiency and demand response.

There is no going back to the old ways of doing business.  Utilities must lead – by playing both offense and defense – or they run the risk of being out of the competition.

 

Defining the New Smart Grid: From Nanogrids to Virtual Power Plants

— July 7, 2014

Nanogrids and microgrids are building blocks that, like Legos, can be stacked into modular structures: in this case, distribution networks that tailor energy services to the precise needs of end-users.  This customization of energy services is clearly the wave of the future; but determining where to draw the line between these two business models can be challenging.

In many ways, nanogrids are just small microgrids that typically serve a single load or building.  They thereby represent a less complex way to manage on-site distributed energy resources (DER).  Ideally, microgrids would be able to serve entire communities, but utility regulations often stand in the way.  These same regulations make nanogrids larger business opportunity today than microgrids, despite their smaller size.

The series of storms and extreme weather that have attacked East Coast grids in recent years has sparked interest in community resiliency initiatives.  New York’s Reform the Energy Vision (REV) initiative is designed to explore how multi-stakeholder community microgrids might provide emergency power to end-users ranging from a private gas station to a municipal fire station (and perhaps a community center emergency shelter).  Connecticut has been struggling with this issue of how best to include both public and private sector end-users, bumping up against the long-standing prohibition of transferring power among non-utilities over public rights-of-way.  To date, only one of the 9 projects approved for funding under Connecticut’s DEEP program is actually up and running, at Wesleyan University.

The Virtual Option

The third smart grid business model that can help build resiliency into power grids is described in Navigant Research’s report, Virtual Power Plants.  A virtual power plant (VPP) is a platform that shares many attributes with the microgrid (and the nanogrid).  In North America, the most common resources integrated into VPPs are demand response systems.  Though VPPs cannot guard against power outages at the customer site, they can play a key role in lowering overall demand on the larger utility grid, thereby stretching scarce resources, directing them to mission critical loads.

The lexicon of organizing structures required to handle the increasing complexity of energy supply and demand is growing.  In order to make sense of this brave, new world in energy, Navigant Research has come up with the following chart highlighting key attributes of three different business models.

 Comparing Nanogrids, Microgrids, and VPPS

(Source: Navigant Research)

Regulators clearly need to revisit regulations standing in the way of community microgrids.  It appears that New York is pioneering this debate, allowing it to surpass California’s position as the leading microgrid market in the country in terms of sheer numbers of projects in the works.  Moving downstream again, it is also important to remember that nanogrids help create smart buildings that, in turn, can also be integrated into VPPs.  These combinations are vital to efforts to harness greater value from DER, thereby increasing energy security.

In the end, it’s not nanogrids, or microgrids, or VPPs, but the deployment of all three in flexible and dynamic configurations that is revolutionizing what was once the staid world of top-down, command-and-control monopoly utilities.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Energy Storage, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Utility Innovations

By Author


{"userID":"","pageName":"Distributed energy","path":"\/tag\/distributed-energy","date":"7\/29\/2014"}