Navigant Research Blog

Tesla Direct Sales Banned in Another State

— October 28, 2014

In mid-October, Michigan governor Rick Snyder signed legislation that effectively bans Tesla’s direct-to-consumer sales business model in the state.  Direct sales of cars are also currently banned in Texas, Maryland, Virginia, and Arizona, and limitations are in place in Georgia and Colorado.  Despite these setbacks, Tesla has overcome battles in Minnesota, Massachusetts, North Carolina, and recently New Jersey.

The reason Tesla’s sales model has been banned has been explained many times, including past Navigant Research blogs, found here and here.  The most critical factor is that Tesla’s direct model leaves established car dealerships out of the business transaction.  This supposedly gives Tesla an advantage over other automakers (like General Motors, which supports the Tesla bans) that must sell their vehicles through dealerships.

As Tesla sales continue to grow, state laws protecting dealerships will come into sharper focus.  Automakers and dealers will have to adapt to legislative reforms accordingly.  Given that, it’s harder to imagine a future where Tesla is forced to sell through dealers than to envision one in which all automakers are able to set up similar direct-to-consumer sales models as they see fit.  Some automakers are already adding more direct pathways for consumers to communicate directly with the automaker on vehicle specifications and deliveries.

Time to Evolve

Under these changing conditions, automotive retail must adapt to the new, information-based, time-efficient market or become structurally obsolete.  Consumers now have more knowledge, power, and control over their vehicle purchases than ever before, and future car buyers will be far more autonomous.  Greater transparency around vehicle costs, automaker inventories, and financing mechanisms enabled by the Internet shifts the bargaining chips heavily in the consumer’s favor.

The disconnect between established dealers and automakers and the new tech-savvy, well-informed consumers will only become more pronounced if state dealer associations focus on campaigning against Tesla rather than pushing industry adaptation.

 

Partnering Takes the Pain Out of Paying for EV Charging

— October 27, 2014

At the dawn of the modern electric vehicle (EV) era (way back in 2010), EV industry participants recognized that a simple way to pay for vehicle charging was critical to EV adoption.  In fact, I recall having conversations with at least one international payment processing company back then regarding the need for a central clearinghouse for EV charging payments.  I described this segment as a small niche that would grow into a major opportunity over time.  Neither that company nor others chose to start building the necessary relationships.  But today, after years of considerable talk and little action, progress is finally being made as charging networks are collaboration and payment clearinghouses are starting to emerge.

During the past half-decade there have been numerous tales of the frustrations of EV drivers who carry multiple cards to be able to access competing proprietary networks.  The Hubject consortium in Europe has been leading the charge to make charging more consistent by simplifying customer authorization, and the group recently announced a method that enables mobile phones to pay for EV charging.

The PayPal Factor

The intercharge direct system is powered by online payment system PayPal.  Drivers scan a QR code on the charging station with their phone, which connects to the intercharge website where PayPal and other payment options are offered.  Customers who have a contract with an EV services provider can pay their existing rates, and more importantly, EV drivers without a contract can still access any of the 3,000 charging stations that support intercharge.

Things have come full circle for PayPal, which was founded by EV maker Tesla Motor’s founder, Elon Musk.  (Note the irony that, since Tesla offers free charging at its charging website, PayPal largely won’t come into play for its customers.)  PayPal is an effective backend payment system, since it’s used globally for small payment amounts.  PayPal is currently being used in the United States for EV charging payments by General Electrics’s WattStation, and in October ChargePoint announced that it would begin accepting PayPal as well.

Reducing the cost and hassle of roaming between EV charging networks will increase the use of public charging stations, which will result in more charging stations being made available, and in turn higher levels of EV adoption.

Makers Make Progress

Efforts to expand EV charging in the United States are slowly paying off, thanks in part to the work of the EV manufacturers themselves.  Nissan is offering free public charging to buyers of the LEAF and convinced competitors ChargePoint, Car Charging Group, AeroVironment, and NRG to each support its EZ-Charge card.  BMW’s ChargeNow program offers a single card for paying at stations from ChargePoint and NRG’s eVgo network, as well as other partners internationally.

Not all partnerships in the area have worked out; ChargePoint launched an ill-fated joint venture with ECOtality in 2013 called Collaboratev that would have streamlined payment processes across both networks, had ECOtality not gone bankrupt only a few months later.

While proprietary payment systems make business sense for the charging networks, they hurt more than help EV owners and automakers.  If the expected millions of EVs are to rely on public charging, roaming between networks should be as simple as roaming between mobile phone networks or getting money from any ATM.  These recent developments provide hope that such interconnections are starting to emerge.

 

Electric Turbochargers: The Next Big Thing in Fuel Efficiency

— October 23, 2014

The key to the next major advance in internal combustion engine fuel efficiency could well be the electric turbocharger.  At a recent fuel economy technology showcase at the U.S. Environmental Protection Agency (EPA) National Vehicle Emissions and Fuel Lab in Ann Arbor, Michigan, Valeo showed off the motor-driven turbo it will supply to an unannounced automaker.  The first production applications are scheduled to begin arriving in 2016, according to the company.

The aggressive expansion of fuel efficient technologies, such as electrification, multi-speed automatic transmissions, and engine downsizing, has played a major part in increasing miles per gallon.  The average fuel economy of the American new light duty vehicle fleet has improved by almost 25% over the past decade.  Meanwhile, gasoline direct injection and turbocharging have enabled engineers to cut engine displacement by 30% or more without sacrificing the performance that drivers have come to expect.  As of the 2014 model year, approximately 75% of Ford gasoline and diesel engines globally are turbocharged while 85% of Volkswagen engines are boosted.

Response Time

Part of the concept behind boosted engines is to use smaller engines with turbochargers that provide performance on-demand.  There has always been an inherent time lag, however, between the time the driver presses the accelerator and the generation of enough extra exhaust gas to spin up the turbo and provide boost.  Mechanically-driven superchargers eliminate much of the lag at the cost of substantial friction at higher speeds.

Replacing the exhaust-driven turbine side of the turbocharger with an electric motor provides a number of advantages, most notably in packaging, responsiveness, and operational flexibility.  One of the fuel economy benefits Valeo highlights is the combination of an electric turbo with the cylinder deactivation – i.e., the ability to shut off multiple cylinders under light loads in order to improve fuel efficiency.

The fuel savings achieved by shutting off unneeded cylinders can be quickly lost when driving on roads that aren’t completely flat.  Even a mild grade can cause an engine to switch back to running on all cylinders in order to produce enough torque to maintain speed.  “With an electric turbo, the engine management system can request small amounts of boost on-demand to increase torque while climbing a grade while keeping as many as half of the cylinders inactive,” Ronald Wegener, application engineering manager with Valeo, told me.  “This can yield up to a 10% improvement in efficiency.”

Valeo has developed versions of the device for both 12V and 48V electrical systems so that the turbo can also be used as part of a mild hybrid system during off-throttle conditions.  Intake air flowing through the compressor drives the motor to generate electricity, charging the battery.  Audi is using this as one of the two forms of energy recovery on its Le Mans-winning R18 e-tron race car.  Many of the current crop of Formula One cars have also adopted this approach.  Earlier this year, Audi announced that the next-generation Q7 TDI, scheduled for model year 2016, would be its first production application of the technology.

Shrinking Engines

Electric turbochargers also provide packaging benefits to engine designers.  Traditional turbos require complex plumbing to route exhaust gases to the turbine side of the turbo and feed the boosted intake charge to the other side of the engine.  Disconnecting the turbo from the exhaust allows designers to place the turbo wherever it fits best for packaging and performance.

Executives and engineers agree that while electric vehicles will gain market share in the coming years, internal combustion engines will likely remain the dominant powertrain choice in the transportation space at least through the 2020s.  With engines continuing to shrink, it seems likely that electric turbochargers will account for a growing share of the boosted engine market in the next decade.

 

Car-Free in Colorado: Living with an E-Bike

— October 20, 2014

After years of vehicle ownership, I decided about 3 months ago it was time for a change of pace.  Literally.  Tired of the plethora of (and seemingly continually rising) costs associated with owning a vehicle (parking, maintenance, insurance, repairs, registration fees, gasoline, etc.), I sold my car and used part of the funds to purchase an E3 Vibe electric bicycle (e-bike)  for $1,500 from Currie Technologies.  An e-bike is a traditional pedal bicycle with a battery pack that stores electricity, an electric motor for propulsion, and a user control attached to the handle bars for modifying the level of electrical assistance.

(Source: Currie Technologies)

Living in Boulder, Colorado certainly makes this transition much easier than in most U.S. cities.  An excellent bicycling infrastructure, a local carshare program, and comprehensive transit system all contribute to an excellent environment for going car-less.

Cost Analysis

With an upfront cost of $1,500, the e-bike will pay for itself after one year of avoided car insurance and gasoline expenses.  My monthly gasoline and insurance charges were about $130 combined ($80 for insurance, $50 for gas), totaling $1,560 per year.  This is more than the brand new e-bike cost itself, without even delving into the additional avoided costs of vehicle registration fees, parking, maintenance, and repairs.  Just as an example of potential additional costs of owning a vehicle, it’s estimated that in Colorado, the average cost of a common car repair (parts & labor) was $348.17 in 2011.

What about the operating costs for e-bikes? While many organizations estimate the cost of fully charging an e-bike from $0.10 to $0.20, other conservative estimates project that it costs just under $0.25 to charge an average e-bike battery from empty to full.  For me, this would happen about twice a week, since I’m usually charging the battery from half to full power 4 times per week (a 6.3 mile commute round trip usually drains the battery to a little over half power).  Using the conservative estimate of $0.25 to fully recharge the battery, electricity for recharging my e-bike would run about $26 per year ($0.50 multiplied by 52 weeks).  This (wishfully) assumes no winter in Colorado.  With a more realistic projection of biking to work three-quarters of the year, this reduces the annual charging cost to under $20.

Electric Hum

When the weather isn’t suitable for biking to work, I take the bus with a complimentary bus pass from my employer.  However, since I do need access to a vehicle on occasion, I have become a member of Boulder’s carsharing program, eGo CarShare.  So far, I am averaging about $20/month in rental fees, amounting to $240 per year.

Overall, becoming an e-bike owner has not only provided significant financial relief, but has also been an incredibly enjoyable experience.  I bike more often and travel longer distances than I would typically go on a traditional bike.  In addition, I get to confuse other cyclists with the humming sound of a 250W electric motor.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Electric Vehicles","path":"\/tag\/electric-vehicles","date":"11\/1\/2014"}