Navigant Research Blog

U.S. National Parks and Electric Vehicles: A Match Made in Heaven?

— April 8, 2014

The U.S. Clean Cities program and the National Park Service (NPS) recently announced nine new projects to deploy clean vehicles at U.S. national parks. These projects are part of the Clean Cities National Park Initiative launched in 2010. The nine projects mainly feature plug-in electric vehicles (PEVs) and hybrid electric vehicles (HEVs).  Around 21 vehicles will be installed through the funding, including some low-speed electric vehicles (EVs).  The projects also include the installation of EV chargers for park visitors. While any move to make the U.S. parks cleaner is welcome, the relatively modest ambitions of this funding effort reflect the challenge that parks present in the adoption of EV or HEV technology.

Parks have long been an attractive target for greener transportation. This is not only for symbolic reasons, but also for practical reasons. Diesel and gas vehicles are noisy and disruptive. Park vehicles may spend time idling, which is both an emissions problem and a cost concern given the large amount of fuel essentially wasted during idling. These factors would seem to make PEV and HEV technology a good option, but to date, deployments have largely been pilot or demonstration programs and there has yet to be a full-scale shift toward electric drives at the U.S. parks.

A Building Barrier

One major barrier has been the lack of truly commercial vehicles available. As discussed in the Navigant Research report Hybrid and Electric Trucks, most of the traditional truck original equipment manufacturers (OEMs) are offering hybrid versions in the larger trucks classes that are not applicable to the park service. In the truck category, parks would primarily utilize utility trucks, pickup trucks, or vans and trucks outfitted to transport passengers.  These would be vehicles in the Class 2b light duty category or medium duty Classes 3-5, where, until recently, there was more attention focused on producing electrified vehicles for delivery service.

Even though pickup trucks are among the top-selling vehicle in the United States, U.S. OEMs have tailed off production of hybrid pickups and only ever offered demonstration models of plug-in trucks.  However, in the past 18 months, there has been an uptick in companies focused on these class levels and in applications with some applicability to national parks. In January, U.S. startup VIA Trucks announced a major commitment by Canadian company SunCountry to place VIA’s plug-in vans into passenger transport services at Best Western hotels. VIA also develops plug-in electric utility trucks, which will be used at several electric utilities in a pilot project funded in part by the U.S. Department of Energy (DOE). U.S. company Odyne Systems will be delivering 120 utility trucks through the same DOE funding; the plug-in system allows utility workers to avoid engine idling by running equipment off of the battery.

Looking at the larger class of passenger buses that are used in national parks, the biggest push is coming from China’s BYD, which has been targeting parks and transit agencies. While most of the company’s orders are outside of the United States, BYD is making a strong push for the U.S. market. After winning bids in Los Angeles and Long Beach, California, the company began to face major backlash from activists and its U.S. competitors. The Long Beach order was recently canceled, although, evidently, the reason was simply a paperwork glitch. In any case, this environment would make it difficult for the NPS to adopt these buses until BYD becomes more established in the United States through transit deployments like the one in Los Angeles.

While increased vehicle availability will help make electric and hybrid options more feasible for any park looking to convert, the issue of the price premium still looms large. With hybrids costing well over 25% more than conventional vehicles and electric buses often reaching a 100% price premium, cash-strapped public services like the NPS will likely find themselves unable to make the switch even if they want to. Lower-cost options, like propane, continue to see uptake in national parks for this reason. This also explains why the Clean Cities National Park Initiative is still necessary to move these vehicles into U.S. parks.

 

Flywheels Offer Hybrids a Mechanical Advantage

— April 4, 2014

It is often assumed that all hybrid vehicles must use a battery for energy storage.  But the essence of a hybrid powertrain is not necessarily engine-off operation, but to provide more efficient transportation over a stop/start journey drive cycle.  The key factor in this mode is to be able to recapture large amounts of energy very quickly and then reuse it, which requires high power density.  While batteries typically have a high energy density, they often do not respond well to high charge rates and may not be able to capture all the available energy from regenerative braking.  Larger vehicles, in particular, have a lot of kinetic energy to store when slowing down.

So the focus for hybrid vehicles is often high power density rather than high energy density.  It is this factor (as well as the lower cost) that has led some manufacturers, particularly Toyota, to continue installing nickel-metal hydride batteries when the rest of the industry has shifted to the higher energy density of the lithium ion battery.  But there are other options for higher power density, if total energy capacity is not an issue.  Ultracapacitors are one alternative and Navigant Research has produced a report on another option: Hydraulic Hybrid Vehicles.  However, a new alternative technology based on the flywheel is now in testing.

Powerful and Economical

Volvo Car Group has recently been conducting testing in the United Kingdom of a flywheel developed by Flybrid Automotive (now part of Torotrak) to determine the potential for fuel savings.  Initial results show a performance boost of 80 hp while improving fuel economy by up to 25%.  The testing uses real-world driving data from public roads and test tracks in both Sweden and the United Kingdom.  Volvo has installed the flywheel system on the rear axle of a front-wheel drive passenger car.  Under braking, the vehicle kinetic energy is used to spin a 6 kg carbon fiber flywheel at up to 60,000 rpm.  When the driver wants to accelerate again, the energy from the spinning flywheel drives the rear wheels directly via a specially designed transmission.

The benefits for the driver are that the engine can be switched off during some braking and accelerating maneuvers, plus there is extra power available when needed to supplement the internal combustion engine.  The Volvo test vehicle is about 1.5 seconds quicker than the standard vehicle going from 0 to 60 mph.

Mechanics of Storage

The Flybrid system uses the mechanical motion directly to power the transmission, so there are no energy losses transferring from one format to another.  Another type of flywheel system, developed for motor racing by Williams Hybrid Power (and since April 1, part of GKN), uses a flywheel driven by an electric motor.  Instead of storing energy chemically as in a battery, the energy is stored mechanically in the spinning flywheel and then converted back to electricity to be used by the electric drive motor.

Both systems use the same mechanical energy storage format and have to address the same issues.  Safety and reliability are important, as is longevity.  Cost is also important, and at present, the flywheel is a lot cheaper than a battery.  It’s good to see some alternative solutions being adopted by larger companies, and this topic will be covered in much more detail in our upcoming report on vehicle efficiency.

 

Electricity Pricing and the Economics of EVs

— April 2, 2014

The hottest global market for plug-in electric vehicles (PEVs) is Norway, where PEVs accounted for nearly 5.5% of all light duty vehicle sales in 2013.  Success of PEV sales in Norway has been credited to the country’s attractive purchase incentives and tax breaks, which include exemption from all non-recurring vehicle fees, annual road taxes, all public parking fees, and toll payments, along with free access to bus lanes.  While these incentives are appealing, equal credit goes to the massive price gap between the costs of petroleum fuels and electricity in the country.

One of the most attractive aspects of PEVs is that driving on electricity is significantly cheaper than driving on gasoline or diesel.  While this is largely true in most markets, the price difference can vary significantly by market.  The most meaningful variables in fuel cost returns are the retail price of petroleum-based fuels, the residential rates for electricity (since a vast majority of PEV charging is done at the owner’s home), and the average efficiency of new conventional vehicles compared to PEVs.

The Turkish Premium

The price of retail gasoline and diesel varies sharply from country to country.  The starkest example is in Turkey and Iran: in 2012, a gallon of gasoline cost $9.61 in Turkey (highest in the world) and $1.25 in neighboring Iran.  Electricity prices are also vastly different from country to country; residential electricity rates per kilowatt-hour (kWh) in France, which gets 80% of its electricity from nuclear power, are half the rates as those in Germany.  The variation in prices for each fuel determines which markets offer the best returns for PEV owners.

The best returns on fuel costs in Europe are in Norway and the worst are in Germany.  If the average new light duty vehicle in Europe has an mpg rating of 35 and the average new PEV has a miles per kWh rating of 2.7, then on a per-mile basis, Norwegian PEV owners save $0.16 per mile while German PEV owners save only $0.05.  Given that Germany’s incentives for PEVs are far less attractive than Norway’s, it’s not surprising that the Scandinavian country (population just over 5 million) still put around 1,500 more PEVs on the road last year than did Germany (population just over 80 million).

State to State

Among U.S. states (average new vehicle mpg is now 25) the best returns are in Indiana ($0.11 per mile) and the worst are in Hawaii ($0.03 per mile).  Given current government incentives, maintenance cost reductions, an annual vehicle mileage of 12,000, and an average $12,000 premium for PEVs, a battery electric vehicle (BEV) driven in Indiana nets a return in less than 4 years – twice as fast as one driven in Hawaii.

Fuel Costs per Mile of Fuel, Select Regions: 2014

Pricing-Economics of EVs blog (04-02-14)

(Source: Navigant Research)

Because PEV returns are so varied, local utilities can significantly affect markets by introducing time-of-use (TOU) electricity rates specific to PEV owners.  TOU rates, which incentivize off-peak electricity usage, can drastically reduce per kWh prices for PEV charging.  Residential TOU rates are limited, for now, to a few utilities in the United States.  Their adoption, however, is a win-win for utilities.  TOU rates can increase utility revenue by making market conditions for PEVs better, thus increasing demand for electricity, and TOU rates shift the increased demand to manageable off-peak hours.  The final outcome is one in which utilities make more money and drivers save more money.

 

Criticism of EV Battery Environmental Impacts Misses the Point

— April 2, 2014

The environmental impact of electric vehicles (EVs) remains the subject of debate, with Tesla Motors becoming the latest scapegoat for allegedly contributing to acid rain in China.  Bloomberg News points out that EV batteries require the use of graphite, which is mostly mined and processed in China.  Graphite mining pollutes the air and water and harms agricultural crops.  The average electric car contains about 110 lbs of graphite, and Tesla’s proposed Gigafactory is expected to single-handedly double the demand for graphite in batteries.

While these are valid concerns, they ignore a few larger facts: the oil industry has far greater overall environmental impact; the production of electricity is much cleaner than refining and burning gasoline; and recycling and reuse techniques are revolutionizing the battery industry.  Tesla, meanwhile, has responded to the graphite concerns. The recent 25th anniversary of the Exxon Valdez Oil Spill reminds us of one of the worst environmental disasters in U.S. history, in which 10.8 million gallons of crude oil was spilled into Prince William Sound, off the coast of Alaska.  Ironically, the congested Houston Ship Channel (one of the world’s busiest waterways) was partially closed over the Valdez anniversary because of a weekend oil spill of nearly 170,000 gallons of tar-like crude.

Compared to Gas

Overall, the equivalent lifecycle environmental impact of electricity is much less harmful than gasoline – assuming it isn’t entirely generated by coal.  According to the U.S. Environmental Protection Agency (EPA), a gallon of gasoline produces 8,887 grams (g) of carbon dioxide (CO2) when burned in a vehicle.  An equivalent 10 kilowatt-hours (kWh) of electricity emits about 9,750g of CO2 when generated in a coal-fired power plant, 6,000g when generated in a natural gas plant, 900g from a hydroelectric plant, 550g from solar, and 150g each from wind and nuclear.  These figures include the entire lifecycle analysis, including mining, construction, transportation, and the burning of fuel.  Since 63% of the 2012 electricity mix in the United States was derived from non-coal energy sources, it has been estimated that EVs emit about half the amount of carbon pollution per mile as the average conventional vehicle.

At the same time, innovative recycling and reuse techniques are significantly increasing the sustainability of EV batteries.  In the United States and Europe, all automotive batteries are required by law to be recycled.  This has made the lead-acid battery industry one of the most sustainable industries in the world, with nearly 99% recycling rates of all the batteries’ components.  Additionally, the world’s first large-scale power storage system made from reused EV batteries was recently completed in Japan.

Second Lives for Batteries

While these approaches do not fully solve the problems associated with graphite mining, the environmental impact created by the manufacturing, transportation, and disposal of batteries is significantly lowered for each additional cycle a battery supplies.  If battery lifetimes can be doubled, the negative environmental impact is cut in half.  Navigant Research’s report, Second-Life Batteries: From PEVs to Stationary Applications, also points out that a global second-life battery market will create new businesses and jobs in addition to improving sustainability.  The global second-life battery business is expected to be worth near $100 million by 2020.

Even with the negative externalities associated with graphite production, EVs still offer an improved overall environmental picture than traditional internal combustion engine (ICE) vehicles.  And Tesla, perhaps in response to pollution criticisms, has announced that it will source the raw materials for the proposed Gigafactory exclusively from North American supply chains. Producing graphite in North America is a much cleaner process than in China.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Energy Management, Energy Storage, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Grid Practice, Smart Transportation Practice, Utility Innovations

By Author


{"userID":"","pageName":"Electric Vehicles","path":"\/tag\/electric-vehicles","date":"4\/23\/2014"}