Navigant Research Blog

5G: What It Is and What It Isn’t

— May 15, 2015

Anyone who follows the communications industry with any regularity has been hearing a lot lately about 5G technology—the amazing next generation of mobile (and fixed) technology that promises ubiquitous, low-latency, high-bandwidth connectivity. 5G will power the Internet of Things and provide always-on coverage for a hyper-connected society. Conceptually, energy cloud connectivity will be a piece of cake for 5G networks. Practically, however, it’s a long ways off.

What Exactly Is 5G?

Good question. The answer is, they’re still figuring it out. “They” being a multitude of organizations and standards bodies worldwide that are currently working independently; once they’ve each come up with working definitions, they will then all need to agree to standards and spectrum alignment issues, among others, before a final answer emerges. But 5G sounds really good on paper, especially the part about less than 1 millisecond (ms) latencies and 1–10 gigabits per second (Gbps) connections. Here are the generally agreed upon working specs for a 5G network:

  • 1–10 Gbps connections to end points in the field (not theoretical maximum)
  • 1 ms end-to-end roundtrip delay (latency)
  • 1000 times bandwidth per unit area
  • 10x–100x number of connected devices
  • 99.999% availability
  • 100% coverage
  • 90% reduction in network energy usage
  • Up to 10 year battery life for low-power, machine-to-machine devices

Cool, right? The problem is that there is currently no way that all of these conditions can be met simultaneously. Rather, certain characteristics will be needed for certain applications, while other characteristics are needed for others. And creating a ubiquitous, less-than-1 ms latency network may simply not be physically possible across large geographies. This is a pretty tall order. Delivering even a few of these goals will be tough while simultaneously reducing network energy consumption by 90.

When Will 5G Really Happen?

It may sound cynical, but it’s unlikely that 5G will become a meaningful communications platform anytime even close to 2020, which is the target date that most standards bodies have set for initial commercial deployments. For years in the nineties, I wrote articles about the zero billion dollar wireless data industry. Following the hype cycle, it took another 15 years before all the necessary components came together and real billions were generated by wireless data. Particularly given the lack of agreement today on the goals and purposes of 5G networks, it will be a decade or more before real-world installations develop. For an excellent overview of the issues and challenges faced in defining and developing the 5G networks of the future, check out this white paper from GSMA.

What Does 5G Mean for Utilities

Over the longer term, 5G infrastructure may power futuristic applications like autonomous driving and virtual reality as well as smart grid applications. But for utilities today, existing communications technology is more than adequate—in places where it’s available.

The bigger challenge for utilities is getting those networks more widely deployed with a holistic strategy for a multitude of energy cloud applications. Monitor the 5G evolution if you’re curious about how engineers plan to defy the laws of physics, but when it comes to your utility’s network, consider the best existing solutions for the smart grid applications of today and tomorrow as you build and extend connectivity throughout the grid.

 

The Comms Are the Cloud

— May 14, 2015

The Internet of Things (IoT). Smart grids. The energy cloud. What do all of these have in common? In order to achieve their promise, ubiquitous, high-speed, high-bandwidth communications networks will be needed. The energy cloud, as described in Navigant Research’s white paper, is expected to radically change the electric power industry over the coming decades. The energy cloud will emerge as the old-school, centralized monopoly utility model transforms into a decentralized, intelligent, two-way grid where utilities, markets, and prosumers transact in real-time for a cleaner, more efficient, reliable, and cost-effective energy industry. The potential in the long run is huge.

But today, adequate, ubiquitous communications that meet utilities’ needs for smart grid technology simply haven’t been widely deployed. Even in North America and Europe, where smart grid efforts have been underway for a decade or more, the infrastructure in place to transport all of that valuable data to the systems and devices that need it is, at best, a patchwork quilt of legacy and newer technologies, deployed in an ad hoc manner. The energy cloud won’t become a reality until seamless, high-speed, interoperable communications networks are present gridwide.

Utilities struggle with their communications networking strategies, even as the media waxes enthusiastically about the IoT and the coming nirvana of 5G technology; the recently announced mega-merger between Nokia and Alcatel-Lucent has been attributed to the marriage of the advanced wireless and wired communications that 5G capabilities will demand. But 5G networks are a decade away; a bit of a reality check is in order. Here’s the good news—and the bad news—about communications and the energy cloud.

The Good News

Perhaps the best news for vendors and service providers is the massive demand for utility communications that the energy cloud will engender. Navigant Research estimates that communications gear for basic smart grid communications technology will be a $30 billion opportunity over the next decade.

Communications Node Revenue by Region, World Markets: 2014-2023

Blog chart - RE(Source: Navigant Research)

 

This is likely conservative, based on expectations for deployment of advanced metering infrastructure (AMI), distribution automation and substation automation technology, and on the leading communications technologies used today—microwave, 900 MHz mesh, cellular, etc. (Detailed forecasts can be found in Navigant Research’s report, Smart Grid Networking and Communications.)

Additive to the infrastructure markets included in this forecast will be service fees collected by comms providers, independent network providers (see PDVwireless), networks for electric vehicle charging networks, connected solar panels, and more.

Remember the cell phones of the nineties? The novelty of being able call someone from outside of the home or office? That’s where we are today in terms of smart grid connectivity and applications. We can measure power consumption thanks to smart meters; we can monitor grid devices thanks to new sensor technology. That visibility provides a wealth of knowledge to grid operators—it’s great!

Now think about the explosion of applications—and revenue—that smart phones combined with 4G networks has allowed. That’s where the energy cloud is heading.

The Bad News

Solving the problem of ubiquitous connectivity—with low latency, high bandwidth, and seamless interoperability—is no small task.  Utilities tend to invest in the lowest cost connectivity solution for the application at hand. Once an AMI network is in place, utilities then begin to think about ways to leverage those networks. Now that we can connect to the meter, we could try (insert the smart grid application du jour here)! But all too often, the network in place wasn’t configured with that application in mind. Existing networks can be a serious limiting factor to cutting-edge smart grid applications. But those sunk investments have to be depreciated and a new rate case may be many years away.

Cautious Optimism

Despite the challenges utilities face in developing holistic, long-term, gridwide communications strategies, it will happen. It will take years—maybe decades—but the energy cloud revolution is already underway. Build the comms, and the energy cloud will come.

 

Framing the Smart Grid of the Future

— April 29, 2015

Armed with years of data, utility industry officials are highlighting some of the results from the most ambitious smart grid demonstration project in the United States. One of the key lessons they learned is how difficult it can be to use the latest smart grid hardware to consistently produce high quality data.

That was the conclusion noted recently by Ron Melton, the director of the Pacific Northwest Smart Grid Demonstration Project and a senior leader at Pacific Northwest National Laboratory (which is operated by Batelle). Launched in 2010, the demo was federally funded under the American Recovery and Reinvestment Act (ARRA) at a cost of $178 million, making it the largest single project of its kind. It included five states—Oregon, Washington, Idaho, Montana, and Wyoming—comprising some 60,000 metered customers, 11 utilities, two universities, and assets in excess of 112 MW. The goal was to test a broad range of ideas and strategies to see if a regional smart grid could lower energy consumption and increase reliability.

Lacking Tools

One of the broad lessons for utilities is that the tools and skills to manage the huge volume of data from smart meters and sophisticated sensors on the grid are largely nonexistent, according to Melton. But it goes beyond merely managing data; the real challenge is to get consistently good data to ensure that sensors across the grid are working properly and that key operating decisions can be made based on reliable high-quality information.

Transactive Control

One of the core technologies used in the project is called transactive control, which in essence is two-way communications between electricity generation and end-use devices, such as electric water heaters, furnaces, clothes dryers, etc. The control signals communicate the price of delivering power to that device at a specific time, and the device can decide when to use electricity—with the owner’s consent, of course. This is the underlying technology for demand response (a topic discussed in detail in Navigant Research’s report, Demand Response Enabling Technologies). Project managers were able to show that transactive control works and could theoretically reduce 4% of peak power costs in the Pacific Northwest. But, as Melton says, this would require about 30% of demand on the system to be able to respond in this way. To get there will take a concerted effort to clearly show the value streams to all parties and then figure out the financial incentives.

Clearly, utilities are still in the early phase of the smart grid and handling big (and small) data in new ways is often uncharted territory. Nonetheless, this demo highlights the framework on which the future grid—what we at Navigant Research see as the energy cloud—will be built, and the steps necessary as the grid of tomorrow emerges.

 

The Impacts of the Evolving Energy Cloud

— April 9, 2015

In my July 2014 blog, I discussed how utilities should play both offense and defense as the energy cloud evolves and transforms the energy sector. Navigant Research’s new white paper, authored by Mackinnon Lawrence and Eric Woods, provides an update on the evolution of the energy cloud. To summarize, we foresee the strategic, business model, and operational impacts on incumbent utilities increasing, more so as new entrants play important roles in states like Hawaii, California, Arizona, Colorado, New York, New Jersey, and the Carolinas.

Distributed energy resources (as detailed in Navigant Research’s report, Global Distributed Generation Deployment Forecast) and renewables will continue to grow exponentially over the next 5–10 years globally, driven by expanding customer choices and a rapidly changing technology landscape. This will dramatically affect utilities’ customer relationships and increase the complexity of their operations as distributed, intermittent, renewable energy resources spread and the grid becomes more and more digitized. Below is an overview of the highlights of the themes we see evolving rapidly.

Customer Relationships: The further evolution of distributed generation, energy efficiency, demand-side management, demand response, smart metering, behind-the-meter energy management systems, and social media will drastically change the way utilities interact with their customers—many of whom will generate their own power, sell power back into the grid, and plug in their electric vehicles at night. These increasingly sophisticated energy customers expect increased self-service and new products and services, which in turn will require innovative front- and back-office customer operations. This is likely to lead, in many cases, to a strategic pivot in how utilities proactively engage with customers.

Operations: Increasing the return on capital investments and reducing operating expenditures has historically been a priority for utilities. As the energy cloud revolution spreads, the importance of managing assets and capital will only increase. Utilities must give special consideration to managing assets, particularly procurement and the decommissioning of stranded assets. Additionally, utilities will look to build or acquire distributed energy resources and other disruptive technologies that transform day-to-day grid operations while maintaining security and reliability through climate change and other major shifts.

Regulation: All of this will also have a profound impact on regulatory policy, raising the question: will current deregulated market structures be forced to change? The utility industry is vital for the global economy, and is regulated as such. As the energy cloud matures, the regulatory environment can and must change. For a more detailed examination of likely regulatory shifts, please see this blog by Mackinnon Lawrence.

Ultimately, the objective is to provide a safe, reliable, and affordable service to customers. But a fragmented landscape of players (developers, producers and operators, wholesale and retail) will drive the need for organizational, infrastructural, process and data integration, and coordination across the power value chain and could create significant cost in a highly distributed energy infrastructure environment. It will be very interesting to see how markets will evolve as the energy cloud transformation takes hold. More to come…

Mackinnon Lawrence contributed to this blog.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Energy Cloud","path":"\/tag\/energy-cloud","date":"5\/29\/2015"}