Navigant Research Blog

How Building Innovations Can Help the United States and China Tackle Climate Change

— November 17, 2014

Under the terms of the U.S.-China Joint Announcement on Climate Change, China has agreed for the first time to set a limit on the rise of its greenhouse gas (GHG) emissions.  As the two biggest economies in the world, the United States and China have the ultimate responsibility for leadership in tackling climate change.  The next big hurdle is driving emissions downward.  Federal regulation on climate change in the United States has been at a standstill, but elements of this agreement shed light on opportunities to reduce emissions while stimulating the economy.

We know buildings demand about 40% of all energy used in the United States, and there is a lot of room for improvement in how we live and work in buildings.  In China, the opportunities to tackle inefficient building operations are just beginning to unfold.  In fact, China’s State Council Development Research Center projects that energy efficiency in buildings could provide 25% of China’s new power needs by 2020.  The central government projects that, by 2020, 60% of the population will be urbanized and more than 1 trillion square feet of new commercial and public buildings will be added to the country’s building stock (learn more from Navigant Research’s reports, Energy Efficient Buildings Asia Pacific and Smart Cities).

Measure, Monitor, Manage, and Mitigate

As the saying goes: you can’t manage what you don’t measure.  The first big benefit of smart building technologies is insight into how your facility is operating.  In order to make improvements, you must have a baseline.  Recognizing this challenge, cities across the United States (including New York City, Seattle, and Chicago) have passed building benchmarking laws to start a new wave of energy awareness.  A wide array of smart building solutions is available to help building owners track their energy use to meet these new demands.

Smart buildings are defined by integrated and dynamic systems.  From the innovators in building energy management systems (as detailed in Navigant Research’s Leaderboard Report: Building Energy Management Systems) to advanced wireless controls for smart buildings, technology is helping building operators and decision makers shift their operations to new schemes for continuous improvement.  Smart building solutions redesign the processes for monitoring and managing systems from heating, ventilation, and air conditioning to plug loads, and in doing so, provide new ways to mitigate GHG emissions from building operations.

The development of smart buildings should be a keystone in the collaboration and innovation targets of the U.S.-China Climate Agreement, because the enabling technologies not only dramatically reduce energy consumption and GHG emissions, but make real economic sense.

 

Smart Building Startups Continue to Flourish

— November 17, 2014

Like the “Harvard of the [insert region here],” “the Next Silicon Valley” is a term so trite that it has become meaningless.  You may have heard of the Silicon Hills, the Silicon Strip, Silicon Wadi, or even the Silicon Valley of the East.  It seems that anyone with a pulse is trying to woo tech entrepreneurs into the next Silicon cluster.  Nevertheless, tech activity is not limited to Northern California.  A recent analysis by the Financial Times found that 60% of “unicorns” (tech startups that reach a $1 billion valuation) were created outside of California’s Bay Area.

Indeed, many local governments are trying to establish startup ecosystems to rival Silicon Valley, including the government of Washington, D.C.  Recently, Mayor Vince Gray announced the awarding of grants to tech startups totaling over $800,000.  Several of these companies represent the wave of innovation occurring in smart buildings.  Aquicore, a real-time energy management software for commercial real estate and industrial facilities, received $122,500.  And Azert, the developer of Smart(er) Socket, wall sockets integrated with Apple’s iBeacon technology and Wi-Fi, also received $122,500.

Other People’s Stuff

It might seem strange to think of wall sockets communicating, and even stranger to think of any building infrastructure using an Apple technology.  What’s more, the idea of a software startup that relies entirely on building controls hardware made and installed by other vendors was until recently unthinkable.  In the past, building systems were specifically designed not to work with other vendors’ products in order to ensure a long-term market for replacements and upgrades.  But the convergence of building technology and information technology, the adoption of open protocols, and greater integration between building automation systems have lowered the barriers to entry in the smart building market.

These startups demonstrate that the competitive landscape of smart buildings is changing.  It’s easier than ever to get building data, meaning that a wider pool of competitors are emerging.  What’s striking, and hopefully indicative of future trends, is that these companies are springing up in Washington, D.C., away from the established tech hub of Silicon Valley and away from established global building controls manufacturers.  Future innovation in smart buildings can be driven by anyone, anywhere.

 

Wireless Power Promises New Capabilities for Smart Buildings

— November 11, 2014

Power_Paddle_webIn the science fiction universe, transmitting power over great distances is remarkably easy.  A shield generator could be placed on, say, the forest moon of Endor and beam its power to an orbiting space station.  Lamentably, in the real world, such extensive wireless power transfer remains elusive.  But, 2015 is poised to be a pivotal year in wireless power.

Current wireless power solutions focus on charging mobile phones and electric vehicles, and both are gaining momentum.  On the mobile phone front, the first commercially available products based on the Alliance for Wireless Power’s Rezense standard will soon hit the market, while the Wireless Power Consortium’s competing Qi standard continues to expand around the globe.

In the auto industry, wireless technology represents the future of plug-in electric vehicles and could be a factory option as early as 2017.

Smart Building Applications

The promise of wireless power extends beyond these early adopter markets — particularly in smart buildings.  The proliferation of the Internet of Things in buildings is currently hindered by limitations in power and communication capabilities.  University of Washington professors Joshua Smith and Shyam Gollakota have an innovative approach to tackling both problems wirelessly.  The two have started Jiva Wireless to develop the solution and plan on taking a leave of absence in 2015 to focus on bringing products to market as early as 2016.

Their approach is to harvest ambient energy in the form of Wi-Fi, TV, and cellular transitions.  As detailed in Navigant Research’s report, Energy Harvesting, these types of systems are already gaining traction in a variety of applications.  What’s novel about the Jiva Wireless approach is the use of ambient backscatter communication, which selectively absorbs and reflects radio frequency (RF) signals, effectively combining power and communication into one function.

Landscape Without Wires

The launch of Jiva Wireless adds to an already crowded field of wireless power solutions.  Many of these solutions, as promising as they may be, have yet to make it to the real world.   Funding of these companies does not appear to be a challenge, though.  Energous, a company developing a wireless power solution using radio waves, raised $24 million in an initial public offering in March, despite not having a commercially available product.  Similarly, uBeam, which has a prototype that uses ultrasonic waves to transfer power, just received $10 million in Series A funding, bringing the total amount of capital raised to $12 million.

Wireless power incumbents are shifting, as well.  Duracell, an early adopter of wireless charging for mobile electronics and the pioneer of Powermat technology, is being split from its parent company, Proctor & Gamble, as part of a strategy of divesting non-core businesses.  Meanwhile, JVIS and d-Wired are attempting to resurrect conductive wireless charging by licensing intellectual property from FliCharge.  The shifting landscape of wireless power providers indicates an interesting road ahead in 2015.

 

Healthy Buildings Get a Boost in New Orleans

— November 10, 2014

With the release of LEED V4, the latest version of its green building rating system, the U.S. Green Building Council (USGBC) is addressing two major components of health: indoor air quality (IAQ) and material transparency.

The former is not a new concept in buildings.  According to Navigant Research’s report, Indoor Air Quality Monitoring and Management, global revenue associated with IAQ is expected to grow at a compound annual growth rate (CAGR) of close to 9% between 2013 and 2020.

As for material transparency, addressing the environmental impacts of chemicals and materials in buildings – and their corresponding health effects – could be a game changer.  By partnering with UL Environment, USGBC will make available Environmental Product Declarations (EPDs) for equipment and materials used in buildings, making transparent what chemicals are near and around people in buildings.

And not a moment too soon.  At the Greenbuild conference in New Orleans, Professor Andrew Whelton of Purdue University presented his findings that polyethylene pipes used for water conveyance in green buildings have been leaching chemicals into the drinking water – above minimum standard levels.  Plastic pipes are used in green building construction because they use less embedded energy in their production and transportation, relative to traditional metal piping.  The direct health implications are not clear from Professor Whelton’s findings, but they certainly provide evidence that the chemical makeup and leaching potential are components worth tracking in buildings that are supposedly environmentally friendly.

Better Buildings = Better Business

Another point of the building-health connection was released in a report by the World Green Business Council, a partner organization to USGBC.   The report, Health, Wellbeing and Productivity in Offices, starts with the overarching premise that the most expensive part of any building is its inhabitants, accounting for up to 90% of operating expenses (it’s not clear if this estimate holds true throughout the developing and the developed regions of the world).  The report analyzes the associated health implications of building siting, design, and operations on qualitative and qualitative metrics like occupant health outcomes, well-being, and perceived benefits, as well as organizational and corporate financial outcomes.  For example, an office environment that forces employees to walk around can improve their overall health, reducing absenteeism and physical complaints.  Another example: a 2011 article in the journal Indoor Air indicated that relative to standard temperature baselines in an office, employees were 4% and 6% less productive at cooler and warmer temperatures, respectively.

Greenbuild also hosted Acting U.S. Surgeon General Rear Admiral Boris D. Lushniak. Rear Admiral Lushniak challenged the audience to design preventive healthcare into the built environment, making healthy buildings the default, rather than a specialty.  He also advocated for a “Blue Movement” focusing on human health, like the Green Movement addresses sustainability and environmentalism.  Rear Admiral Lushniak ushered the concept of integrating health into building design, function, and operations for the green building community with passion.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Energy Efficient Buildings","path":"\/tag\/energy-efficient-buildings","date":"11\/23\/2014"}