Navigant Research Blog

Playing Under the (LED) Lights

— February 9, 2015

As my colleague Paige Leuschner has noted, the 2015 Super Bowl was arguably the most energy efficient major sporting event ever.  In particular, it was the first Super Bowl to be played under LED lights.  The fact that LEDs have penetrated all the way to this pinnacle of sporting events proves more than a U.S. Environmental Protection Agency (EPA) test or a third-party certification ever could that this type of lighting has overcome all of the initial concerns over quality and has firmly earned its position in the mainstream.  A stadium that hosts the Super Bowl cannot afford to experiment with a lighting technology that might not be bright enough, might provide an inconsistent color quality, or might flicker in even the slightest way that could be picked up by the high-speed cameras that record every moment of the big game.  Other lighting technologies have met those strict demands for decades, so the choice to switch to LEDs demonstrates a confidence that this comparatively new technology would not fail.


Indeed, the LEDs at the University of Phoenix stadium performed flawlessly.  Each new fixture is significantly brighter than the metal halide fixtures they replaced, allowing the stadium to reduce the total number of fixtures by more than half.  Color quality was also improved through the upgrade, according to Mike Watson, vice president of Product Strategy at Cree, the company that manufactured the LEDs.  As for the ability of high-speed cameras to capture critical moments without disruption by flicker, viewers who may have watched and rewatched every frame of Jermaine Kearse’s miraculous catch as the ball bounced off his left leg, right knee, and then his hands multiple times can attest that the lighting stayed consistent through every single frame.


So, without risk of jeopardizing the quality of lighting, the Super Bowl stadium was able reap the advantages of LED lighting.  The new system uses only 310 kW of electricity, compared to 1.24 MW from the previous system, almost 4 times as much.  Beyond the resulting energy and cost savings, the stadium management could also rest easier knowing that the new lighting would be able to recover almost instantly in the event of a brief power failure, rather than being forced to wait for the significant warm-up time of metal halide lighting (such as in the 2013 Super Bowl).

The clear success of LED lighting within sporting facilities also reduces the potential of a rival lighting technology, light-emitting plasma (LEP).  Although LEP cannot match the efficiency or cost of LED lighting, it was once expected to compete well in spaces that require very high intensity light and where high-speed photography demands the absolute absence of any flicker.  However, given that LEDs have demonstrated their ability to meet those demands in one of the world’s most watched sporting events, it is unlikely that LEP will ever be able to claim the sporting facility niche.  Since LEDs are taking up the lion’s share of R&D dollars spent by lighting companies, as discussed in the Navigant Research report Energy Efficient Lighting for Commercial Markets, it will be hard for LEP or any other lighting technology to catch up in the near term.  The bright lights at the Super Bowl reinforced the growing dominance of LED lighting across an increasing number of end uses for years to come.


Blog Articles

Most Recent

By Date


Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author

{"userID":"","pageName":"Energy Efficient Lighting","path":"\/tag\/energy-efficient-lighting","date":"3\/2\/2015"}