Navigant Research Blog

California Calculates the Value of Time in Energy Efficiency

— July 22, 2014

The 2013 update to California’s Title 24 building energy efficiency standards went into effect on July 1, 2014.  In addition to increasing overall building efficiency requirements over the 2008 standards, this update sets out more stringent lighting requirements for both residential and non-residential buildings.

The 2013 update also includes changes to California’s time dependent valuation (TDV) calculation.   Used only in California, TDV is a tool to gauge the value of energy efficiency measures.  Unlike other metrics, such as site or source energy (measured in kBtu), TDV includes the cost to provide energy based on time of use, as well as other variations in cost due to climate, geography, and fuel type.

TDV was developed in 2005 and was updated in both 2008 and 2013 to help California meet the energy efficiency goals established in Title 24.  In the 2013 update, the California Energy Commission (CEC) changed the TDV calculation to account for climate sensitivity by separating California into 16 different climate zones.  This alteration helps reflect differences in energy costs driven by climate conditions, which vary considerably throughout California.

Finer-Grained

One of the key barriers to wider TDV adoption is developing values for each climate zone.  As stated above, California alone has 16 climate zone values.  Another limitation is that many state officials are unaware of it. California is the only state that uses TDV, whereas metrics such as site and source energy are much more commonly employed both nationally and internationally.  Furthermore, TDV does not account for the potential grid modernization costs necessary to export excess electricity back to the grid.

But since TDV accounts for differing energy costs based on a range of factors, it more accurately captures the societal cost of energy consumption that’s missed in assessments based only on source or site energy parameters.

In the coming years, as California tries to build more zero energy buildings (ZEBs), TDV will play an important role in determining whether a building meets the required energy use intensity to qualify as zero net energy.  The forthcoming Navigant Research report, Zero Energy Buildings, will provide an update to the 2012 iteration and look further into the benefits and challenges associated with TDV as a metric.

 

Ending the Office Climate Wars

— July 17, 2014

For some commercial building tenants, interacting with the heating, cooling, and lighting of their offices has been a challenge.  There are the dummy thermostats, the inoperable windows, the buildings that are running heating and cooling at the same time, and the hot and cold calls from the corner office.

Many cubicle dwellers use space heaters in summer to keep their overly cooled selves from shivering, while others need fans to mitigate afternoon sun – even in the winter.

Improved automated buildings controls, networked light sensors, occupancy sensors, and re-commissioning have all helped office workers be more comfortable in their workplaces.  Yet, the overarching problem remains.  This is due in part to the challenge of keeping old and complex systems running optimally.  The other challenge gets back to the dummy thermostat: you can’t keep all people happy (or warm or well-lit) all of the time.  It’s no simple matter to gain an understanding of people’s comfort levels and equip a building to serve those different and diverse needs.

My Chair, My Climate

The University of California Berkeley’s Center for the Built Environment (CBE) has led a number of research efforts that try to determine how comfortable we are when sitting at our desks.  CBE has developed prototypes of office chairs that incorporate user-controlled fans and thermometers.  These climate-controlled chairs, known as Personal Comfort Systems, aim to take some of the balancing load off the HVAC system.  A 1-degree expansion of a building’s deadband (the temperature range where HVAC systems do not have to heat or cool) can result in energy savings reductions of 5% to 15%.

CBE also conducts regular occupant surveys in buildings of all kinds.  One recently found that occupants of LEED-certified buildings feel no more comfortable than those in buildings that lack the LEED plaque.  An interesting observation is that, over time, LEED-occupied people report less and less comfort.  Perhaps there’s a honeymoon period for green buildings when people seem to feel more comfortable.

The Goldilocks Strategy

For some occupants, the proximity to windows is an attractor, while others find the glare and the heat disruptive.  The smart glass company View has created a mobile application that enables users to remotely control their windows’ opacity from their desks.  The app allows a user to schedule tinting depending on personal need – for instance, when it’s time to wake from an afternoon nap.  For more on smart glass, see Navigant Research’s report, Smart Glass.

Meanwhile, a startup called Building Robotics is attempting to solve the collective comfort puzzle using an algorithmic technique.  Its innovative occupant comfort product, called Comfy, asks users to rate their comfort simply: too hot, too cold, or just right.  Comfy then tunes a building’s HVAC system to deliver maximal comfort based on occupant feedback instead of predetermined setpoints.  Using machine-learning algorithms and facility management guides, it can create user-focused HVAC schedules based on what feels good to most users, not what temperature air is being delivered.

Comfy will likely prove to be a disruptive technology, reducing the engineering focus on setpoints and increasing the striving for customer satisfaction (i.e., comfort).  As these types of technologies spread, office workers will be more comfortable.  And in serving them, buildings will use less energy.

 

Blackout-Plagued India Moves toward a Smarter Grid

— July 10, 2014

Utilities in India continue to take concrete steps toward upgrading to a smarter power grid that in the last few years has suffered massive blackouts.  Though the steps are not yet widespread, they show progress toward a more modern and stable grid.

Within a 2-week span, two utilities announced contract awards for new meters.  The largest announcement came when Bangalore Electricity Supply Company ordered 1.7 million digital smart meters from Landis+Gyr.  The meters are to be delivered over the next 12 months to Bangalore Electric, which provides power to the city of Bangalore and eight districts in the state of Karnataka, population 64 million.  The second recent announcement came when West Bengal State Electricity Distribution Company Limited ordered more than 1 million digital smart meters from Landis+Gyr.  Headquartered in Kolkata, the utility manages electricity distribution for 96% of the state of West Bengal, population 90.3 million.  West Bengal has been at the forefront of smart metering in India, having begun upgrading devices in 2009.  This deal follows an order for 1.5 million meters from Landis+Gyr, which were deployed last year.

Progress, Perhaps

In a separate deal, Essel Utilities will deploy an unusual retrofit meter solution.  The utility will install a module, made by local metering company Aquameas, that contains a radio unit from Cyan Holdings called the CyLec 865 MHz RF device.  A total of 5,000 of these units will be attached to existing meters.  The retrofit installations are to take place in the city of Muzaffarpur, in the state of Bihar, starting late in the fourth quarter of 2014.

Earlier moves made by Indian utilities and smart grid vendors indicate that the market is progressing.  Tata Power Delhi was the first utility in India to launch an automated demand response project with smart meters.  The project in the nation’s capital is for commercial and industrial customers that can take advantage of the latest technology.  Approximately 250 customers are involved, with the potential of helping shed loads totaling 20 MW.  Project partners include IBM, Honeywell, and Landis+Gyr.  Washington state-based meter provider Itron has made India a priority for its smart metering efforts, opening a lab last year to highlight its solutions for the Indian market, where it has also been active in supplying advanced water meters.

India still has a long way to go to reach its goals of a more modern electric grid that could eventually involve some 130 million meters.  But utilities are moving ahead with projects and pilots that could bring the country’s power grid closer to the 21st century.

 

With Developer Program, Nest Raises Questions

— June 30, 2014

This week Nest Labs introduced its Nest Developer Program, which integrates smart devices for both home and lifestyle uses.  The results suggest that energy efficiency is going mainstream without most people even knowing it.  This program, which has already enrolled partners such as Mercedes-Benz, Whirlpool, Jawbone (UP24 maker), LIFX, and Logitech, allows communications between smart devices in order to influence and optimize their overall functionality.  For example, the Nest thermostat could receive better information on a homeowner’s sleep/wake cycle, whereabouts, and habits from data transmitted through the UP24 bracelet.  It can then incorporate this information into its intelligent algorithm for determining household heating and cooling patterns.

But that’s only a small part of it.  Nest has already taken a stab at utility-scale demand response (DR) through its Rush Hour Rewards program for climate control, but the program can now enroll other energy-heavy appliances, such as washers and dryers, in the same DR events.  Following device trends in electric vehicle charging, where smart communications are increasingly integrated and relied upon, it’s fair to speculate that this type of developer program has the potential to solve a lot of the problems utilities are currently facing as growing renewables penetration causes instability along the distribution grid.

Privacy Pushback

The potential to optimize energy usage will grow significantly as cloud-based home energy management advances technologically and adds functionality.  But the market is likely to experience setbacks as privacy issues are raised.  Nest and Apple have both created privacy guidelines for data as it is communicated between devices, but protection and control over this information will still be an issue for customers.  As public utilities incorporate software platforms for managing connected devices, it’s unlikely they will be able to avoid the type of pushback (seen here, here, and here) that has hindered the deployment of smart meters.

Another question inherent in this move to a connected life is how the interaction between devices and software will take shape.  Nest and its associated partners have built value propositions off the premium quality of their networked thermostats and the software that controls them.  But competitors like EcoFactor and EnergyHub build value off the ability be flexible in the devices they connect to – asking if premium devices are really all that necessary to realize the same gains.  When you involve multiple customer demographics (with different levels of income and values) and budget-conscious public organizations, different needs and limitations will require different solutions.  There’s no denying that people become emotionally connected to well-made, well-designed hardware – and they will pay a premium for it.  But, as the cellphone industry has shown, there are limitations in terms of hardware development.  So how long will the novelty last for thermostats?

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Energy Storage, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Utility Innovations

By Author


{"userID":"","pageName":"Energy Management","path":"\/tag\/energy-management","date":"8\/30\/2014"}