Navigant Research Blog

Islands Sail into Energy Storage

— March 3, 2015

Saddled with the highest electricity rates in the world (and threatened by climate change more than almost any other communities), many islands and isolated grids have opted to integrate wind and solar to replace expensive, imported diesel fuel. One challenge for these systems is that they do not have the benefit of calling upon neighboring systems to balance their wind and solar against load–leading to instability and insecurity of supply.

As a result, many remote grids are adjusting their technical requirements for connecting intermittent resources like wind or solar to the grid, requiring that these resources be firmed. In late 2013, for instance, Puerto Rico adjusted its technical requirements for connecting wind and solar assets to the Puerto Rican grid. This isn’t a direct requirement for energy storage specifically, but is a good fit for storage.

The Flywheel Option

Other island markets are betting on storage more directly. Aruba has committed to an aggressive plan to become 100% renewable by 2020 and has signed agreements with BYD and Temporal Power, as well as a power purchase agreement with Hydrostor in order to achieve its energy goals.

The typical applications in these markets are wind, solar, and diesel hybrids. In previous years, the most common technology for remote, isolated grid storage was advanced batteries. This was partly a function of availability and technology fit. Very few other storage technologies are modular–underground compressed air and traditional pumped storage require specific geologies–and few vendors were targeting the space. Moreover, the working assumption in terms of technology fit has been that a longer-duration storage system is more valuable than a short-duration storage system. Several flywheel vendors are disproving this assumption, however.

ABB’s Powercorp, for example, uses flywheel technology in remote microgrids, such as the BHP Billiton nickel mine in Western Australia and the Coral Bay community in Northwestern Australia. These are remote diesel-led systems.

Way Up North

Beacon Power has commissioned a demonstration project in St. Paul, Alaska, combining an existing plant, which includes a 225-kW wind turbine and 300 kW of diesel generators, with a 160-kW flywheel system. In this scenario, the flywheel system will enable the host utility to further improve wind utilization and deliver fuel savings of up to 30% over existing (pre-flywheel) consumption levels.

While it is still the case that some amount of long-duration storage is necessary in order to achieve very high renewables penetration on an isolated grid, flywheels are demonstrating that significant diesel savings can be achieved with as little as 30 minutes or less of storage.

 

Utilities Send in the Drones

— February 19, 2015

Your local electric utility may be the next company to deploy unmanned aerial vehicles (UAVs), a.k.a. drones, in your community. Transmission and distribution utilities are planning to deploy fleets of drones for power line inspections in order to more rapidly identify foliage encroachments on power lines, storm damage, and overloading in both urban and remote areas.

These types of inspections typically have been completed using manned helicopters. Since the Northeast blackout in 2003, North American electric utilities have spent millions to fly helicopters over their power lines to meet new grid reliability standards. Drones offer a cheaper and more reliable alternative.

At the Consumer Electronics Show (CES) show in Las Vegas, a whole section of the exhibit floor was devoted to drone technologies. Forward-thinking utilities have picked up that point.

What They Need to Know

A recent article in Electric Light & Power discussed the utilization of light-reflecting imaging technologies that create 3D images of the environment, called Lidar, to more thoroughly monitor electric transmission rights-of-way. According to Duke Energy, “Lidar’s 3-D models tell us everything we need to know about loading on our lines and nearby encroachments.”

Innovative electric transmission and distribution operators have been working with the Federal Aviation Administration (FAA) to utilize UAVs across their systems. However, utilities won’t be piloting drones until the FAA finalizes rules that govern their safe operations in the National Airspace System. The FAA planned to finalize those rules by 2015 but is not expected to meet that deadline. Utility proponents suggest UAVs can make the nation’s infrastructure more reliable and secure, perhaps warranting an FAA exemption.

Unmanned Pilots

A number of pilot demonstrations of UAV applications and use cases have been occurring across the United States, notably with Duke Energy on the East Coast and San Diego Gas & Electric (SDG&E) in the west. The use cases for UAVs are not limited to transmission and distribution power line inspection; they also include critical functions such as:

  • Solar PV panel inspections to identify damages to PV panels and schedule maintenance across thousands of panels. UAVs can find individual damaged solar panels amid thousands by using thermal imaging to detect anomalous heat signatures.
  • High-risk jobs like scanning a wind turbine blade for cracks 400 feet in the air without human intervention.
  • Improved power restoration efforts in the aftermath of major storms. For example, in 2012, the Electric Power Research Institute (EPRI) suggested drones could assess damage and help bucket trucks and line technicians prioritize power restoration.

In 2014, the FAA granted SDG&E an experimental certificate, also known as a Special Airworthiness Certificate, for UAVs. That certificate allows SDG&E to use drones for research, testing, and training flights in lightly populated airspace in eastern San Diego County. “The unmanned aircraft system provides us with another tool in our electric and gas operations tool chest,” said Dave Geier, SDG&E’s vice president of electric transmission and system engineering.

 

A Tumultuous Year for Demand Response

— January 6, 2015

Weatherman_webThe participation of demand response (DR) in the wholesale markets has been fairly stable for the last 5 years or so.  2014 blew those trends out of the water.

The year came in like a lion, with the polar vortex hitting the entire United States during the first week in January.  Virtually every region of the country activated DR resources during that freeze.  Overall, DR performed well, dispelling myths that it could not contribute to winter reliability.

The spring brought the annual forward capacity auctions for the 2017-2018 power year for ISO New England and PJM, which both showed lackluster results for DR.  In New England, while capacity prices doubled around the region, the amount of DR cleared capacity stayed flat from the prior year’s auction.  Meanwhile in PJM, while the capacity price in the eastern region stayed flat and the western price doubled compared to the prior year’s auction, DR cleared 10% less capacity than last year.

Legal Bombshell

Then the fireworks began.  Everyone in the industry had been waiting for a ruling from the U.S. Circuit Court of Appeals on Order 745 from the Federal Energy Regulatory Commission (FERC) on DR compensation in response to a challenge that was raised by the Electric Power Supply Association a couple years earlier.  The court dropped a bombshell by questioning the very jurisdiction of FERC over DR, and the entire DR community stopped in its tracks.

The rest of the year was consumed by appeals and writs and stays and various other legal maneuvers, with some parties trying to get the court’s decision to take immediate effect and others trying to delay it as long as possible and get the U.S. Supreme Court to take up the case.  As we enter 2015, the fate of the order is still in the balance, and probably will be until the spring, when the Supreme Court will likely decide whether to take up the case.

Meanwhile, Elsewhere …

Other accomplishments in the DR world have been overshadowed by the FERC 745 case.  Baltimore Gas and Electric unveiled the first default Peak Time Rebate program.  New York and California are undertaking large-scale utility transformation efforts.  Internationally, many markets in Europe are percolating with DR activity, and Asia is heating up as well, led by South Korea opening up its electricity market to DR in November.  Finally, merger and acquisition activity in the space has accelerated, with EnerNOC going on a buying spree and Constellation selling its DR business to Comverge to create CPower.  Many of the above topics, along with several other interesting developments, can be found in Navigant Research’s free white paper, Smart Grid: 10 Trends to Watch in 2015 and Beyond.

Will 2015 be equally eventful?  I certainly don’t expect a repeat of the polar vortex situation, so in that respect, DR should get a respite.  I do expect chaos on the regulatory front to continue, though, regardless of the outcome on Order 745.  The regional transmission organizations will likely continue to squeeze all resources, including DR, for higher reliability standards.  More states are expected to push for retail-level DR, both as a reaction to Order 745 and out of their own needs.  And the international arena is likely to expand strongly, providing a relief outlet for companies looking to diversify outside the United States.

 

The Trouble with Trying to Reduce Residential Energy Consumption

— January 5, 2015

A recent story in The Wall Street Journal (subscription required) reminds us of the difficulty in trying to reduce energy consumption.  The story, by Jo Craven McGinty, notes that after 3 decades of effort aimed at lowering residential energy use in the United States, the overall level of consumption is still about the same, about 10 quadrillion BTUs per year.

Taking a deeper look, however, there is some positive news in the data.  While overall consumption is nearly unchanged, the average energy consumption per household has decreased, dropping to about 90 million BTUs a year in 2009 (latest year available) from about 114 million BTUs in 1980.

So, what is going on? Several things: newer homes tend to be larger than older ones.  And though they have more efficient envelopes and systems (double-pane windows, improved insulation, and efficient heating-cooling systems), it takes more energy to heat larger spaces, and the proliferation of devices in homes has required more energy use.  We now plug in more TVs, computers, DVRs, mobile phones, and second refrigerators.

The Efficiency Paradox

While our homes are more efficient, this is offset by an increase in energy consumption, a phenomenon called the rebound effect, or the Jevons Paradox, which holds that an increase in efficient use of a resource, like energy, can result in greater use and reduce the benefit.   This is not a hard and fast rule, and it is often debated among economists.  Nonetheless, there is a propensity toward squandering some efficiency gains once realized.  For example, when gas prices drop significantly, the cost per mile is lower, and people are more inclined to drive further or faster.

As McGinty points out, Americans receive mixed messages, being hectored to conserve energy while also being constantly invited to buy new gadgets and appliances that require energy.  This is evident in the U.S. Energy Information Administration data showing how consumption by type has changed.  In 1993, appliances, lighting, and electronics accounted for 24% of home consumption, which rose in 2009 to 34.6%.  Space heating was 53% of home energy consumption in 1993 and decreased to 41.5% in 2009.

Annual Residential Energy Consumption by End Use, U.S.: 2009

                               (Source: U.S. Energy Information Administration)

Helping to reduce residential consumption lies at the heart of home energy management systems and represents a key goal of utility energy efficiency programs.  No one is suggesting these efforts should stop just because the net result can seem frustratingly ineffective, or merely incremental.  But, as noted in Navigant Research’s report, Home Energy Management, one of the inhibitors to wider adoption is the uncertainty around net benefits.  Some argue that one way to avoid the rebound effect would be a tax to keep the cost of energy use the same.  But that would be a hard sell.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Energy Management","path":"\/tag\/energy-management","date":"3\/5\/2015"}