Navigant Research Blog

Energy Storage Association Offers a Call to Action for New Policy

— December 14, 2017

In collaboration with Navigant Research, the Energy Storage Association (ESA) recently published its latest white paper, 35×25: A Vision for Energy Storage, analyzing the evolving needs of the electric grid and the market drivers powering rapid energy storage industry growth. The study introduces the current state of the industry along with a vision where widespread storage deployments result in major economic, environmental, and social benefits.

Key to the paper’s findings is a call to action section outlining policies and programs being implemented around the country to support the growth of the industry. Over the coming years, changes in both government and regulatory policies will have a substantial effect on how the market develops and at what scale. Players in the market should ensure they fully understand the changes that may be coming and how they will shape future opportunities.

ESA’s call to action highlights considerations and actions for both legislators and industry regulators that seek to capitalize on the multitude of benefits provided by energy storage. For legislators, there are four primary categories of initiatives being explored that offer both direct and indirect support as follows:

  • Energy storage impact studies: A strong understanding of the benefits of energy storage is a great first step, allowing local stakeholders to quantify the impacts of storage deployments, such as upfront and ongoing expenses, grid operating cost savings, improved reliability, emissions reductions, and job creation. 
  • Procurement targets or mandates: Multiple states have implemented targets that serve to clarify long-term policy objectives for the industry, spurring action from utilities and providing operational experience for stakeholders. 
  • Incentive programs: Including subsidies, grants, and tax credits, which lower the costs for new storage projects to accelerate market growth and establish a sustainable local industry. 
  • Clean energy standards: A clean energy standard, or clean portfolio standard, is similar to a renewable portfolio standard; however, it often has a broader focus. States including Connecticut and Vermont have implemented standards to ensure storage is compared side-by-side with other resources in planning processes and require electricity providers to implement new technologies.

Many of the legislative actions taken to support energy storage, such as subsidies and procurement mandates, have received significant media attention. However, in many cases, the local regulators have more influence over a market’s growth. Out of an obligation to protect ratepayers and oversee utility investments, regulators must work collaboratively with all stakeholder groups to facilitate constructive dialogue around the deployment and integration of storage systems. ESA’s white paper outlines steps that can be taken by regulators as follows:

  • Clear rules regarding storage: Do current regulations adequately account for energy storage participation? If not, work with utilities, industry participants, and research organizations to better define participation methods and strategies for new technologies.
  • Updated modeling in proceedings: Many of the modeling tools used in integrated resource planning proceedings today lack sufficient granularity and an evaluation methodology that properly incorporates energy storage. For example, models for storage should assess the effect of deployments at specific locations and over sub-hourly time intervals.
  • Streamlined interconnection standards: Despite efforts, current interconnection procedures often pose a significant barrier to new entrants. Streamlining interconnection processes is critical to enable grid modernization.
  • The effects of rate design: New rate structures that accurately reflect the locational and time-based costs and benefits of integrating distributed energy resources, including energy storage, should be explored.

At this stage, it is critical that industry participants with in-depth knowledge on the true costs and benefits of energy storage technologies participate in policy development to ensure a level playing field is created. Along with greater detail on the policy initiatives listed above, ESA’s white paper quantifies the diverse benefits of energy storage and how this disruptive technology can transform the electricity industry.


Why Does Diesel Win in Places like Puerto Rico? It’s 9,000 Times Better Than Solar PV by This Metric

— December 12, 2017

In the aftermath of natural disasters like Hurricane Irma, there is much talk about how renewables are the ideal backfill to replace and modernize electric grids. Indeed, renewables like solar PV and wind, along with energy storage, grab headlines due to their falling costs, low lifetime carbon emissions, and general excitement about their deployment and future potential. Why, then, was the largest immediate post-storm addition a pair of 25 MW diesel-fired turbines installed by APR Energy?

Compactness Is Key

In addition to dispatchability and fast install (the plant was operational in 15 days), a key factor is energy density, defined here as daily energy output per acre of plant area. By Navigant Research numbers, combustion turbines like the ones installed by APR can produce as much as 6,200 MWh in a day using 1 acre of land. Compare that to solar PV, which is smaller by a factor of 9,200; based on National Renewable Energy Lab data, solar PV can be expected to produce about 0.67 MWh in an acre. The figure below indicates energy density by corresponding bubble size. The numbers vary by project, but the contrast is stark. Reciprocating generator sets (gensets) are compact, more distributed than the turbines, and a key part of the recovery (with the installation of 375 generators noted by this article). There are also headlines citing fast installation of renewables in microgrids, a clear trend of the future. Still, many of the high output, dense systems tend to be based around fossil fuels.

Energy density has two components. Power density (along the vertical axis) indicates the footprint needed for energy production in any instant of time. Combine that with the second component—capacity factor, along the horizonal axis—and fossil-fueled generation can look exceptionally appealing thanks to its availability nearly 24/7. A crucial advantage is the system’s dispatchability, the ability to provide power on demand.

Energy and Power Density by Technology: Daily Delivered Energy (MWh) in 1-Acre Footprint,
North America: 2017

*Assumes 6-hour (150 MWh) battery discharges 80% of capacity, once daily.

**Equivalent hours/day at max output, assuming consistent demand for power.

Sources: Bloom Energy, Caterpillar, General Electric, National Renewable Energy Laboratory, NGK

Island nations are often constrained on space and need to fit generation among existing infrastructure—especially after a disaster. Many are among the most cramped on Earth, with Japan, Taiwan, the Philippines, Puerto Rico, and many Caribbean nations falling in the top one-sixth of all countries by population density. Though rooftops are available for solar PV, they can be small and may need retrofits. Offshore wind is quickly becoming more appealing, too (though if the grid goes down, it can’t provide onsite, distributed power).

Hybrid Systems Hold Promise

While diesel has the advantage of compactness and dispatchability, it is also expensive, challenging to transport long distances, and emits lots of greenhouse gases and other criteria pollutants like NOX and particulate matter. Natural gas holds many of the same advantages while avoiding many of the cons of diesel; where it is available, it often outperforms diesel. Dual-fuel turbines and gensets can be even more attractive—the Puerto Rico turbines produce power at 18.15 cents/kWh on diesel and less on natural gas when it’s available.

Still, natural gas faces similar hurdles to those noted for diesel (albeit lower ones). In many cases, the optimal system is hybridized—relying on a mix of fossil fuel and renewables. Despite all the buzz around solar, storage, and other renewables, reliance on only those technologies is often cost prohibitive. Hybrid microgrids based around diesel or heavy fuel oil generation can often see fuel savings of 10%-30% or more with the addition of new technologies like solar PV, wind, and storage.


Is Finland Europe’s Best Hope for Microgrids?

— December 7, 2017

While Europe is considered a global leader in moving toward a low carbon energy future, the tightly regulated EU markets have several features that severely limit the development of microgrids:

  • The focus has been on large-scale renewable energy development such as offshore wind, which requires massive investment in transmission infrastructure.
  • Deployment of distributed energy resources such as rooftop solar PV has primarily been based on feed-in tariffs, a business model precluding the key defining feature of a microgrid—the ability to seal off resources from the larger grid via islanding.
  • EU markets are tightly interwoven and methods to address the variability of renewables such as wind and solar lean toward cross-border trading, not localized microgrids.

As the forthcoming update to Navigant Research’s Microgrid Deployment Tracker demonstrates, Europe represents approximately 9% of the global microgrid market. The vast majority of microgrids deployed in Europe are actually on islands in the Mediterranean, the Canary Islands off the coast of Spain, or projects such as Bornholm or the Faroe Islands of Denmark.

I recently attended the International Symposium on Microgrids in Newcastle, Australia at the CSIRO Energy Centre. One could argue that Australia is the current global hotspot for commercialization of the Energy Cloud ecosystem. I have certainly made that argument in the past.

Fortune in Finland?

Perhaps the most surprising revelation at the conference was this: a unique confluence of factors make Finland the best opportunity for microgrids in Europe. Finland is not only the global leader on smart meter deployments, with 99% of its 3.5 million customers having access to this technology, but it also has a deregulated wholesale and retail market that features 83 distribution system operators (DSOs), with the largest distribution networks composed of 200,000 customers.

Unlike its neighbors Sweden and Norway, Finland lacks massive hydroelectric resources. What hydro it has tends to be run-of-the-river systems, and some of the smaller scale systems are microgrid-friendly. Most importantly, Finland is a country that does not fully share the stellar reliability associated with the EU grid. During blackouts in 2011 and 2012, as many as 570,000 customers lost power for an extended period of time. This outage raised the issue of the vulnerability of the Finland grid to winter storms due to overhead lines running through the country’s deeply forested regions that can sag from snow.

Pro-Consumer Policy Changes

In a quick response to these power outages, new regulations have been put in place that limit power outages to 6 hours annually for urban residents and 36 hours for rural customers by 2028. In a policy that would likely scare utilities in the US, DSOs are required to compensate customers for power outages. If a power outage lasts longer than 12 hours, the DSO must pay the customer 10% of its annual distribution fee, and compensation goes up gradually to a maximum of 200% with interruptions longer than 288 hours.

The first option of most DSOs to respond to these new reliability regulations is to place distribution lines underground. However, that can be expensive, especially given the low density of some DSO customer bases. According to research performed by Lappeeranta University of Technology (LUT), the lowest cost option for 10%‒40% of the medium voltage branch lines would be low voltage direct current microgrids. One such LVDC microgrid project, developed by LUT in collaboration with DSO Suur-Savon Sähkö, was developed in 2012, incorporating solar PV and batteries. Though only one other microgrid currently is operating, Finland represents an ideal market for utility distribution microgrids.


Californian and National Policies Could Shape Future Value Stacking for Distributed Natural Gas

— December 5, 2017

Distributed natural gas generation (DNGG) has significant potential for disruption in the electric sector thanks to improving generator technologies, cheap fuel, and the global trend toward decentralized systems in need of dispatchable power. Navigant Research has identified DNGG as a significant trend of the future, and various legislative and regulatory actions continue to affect this often overlooked but critical solution ecosystem. On the surface, some of these regulatory decisions appear as setbacks, and issues at the federal level remain unresolved. Yet, this key enabling technology for the Energy Cloud will continue to show growth due to underlying benefits dependent upon government subsidies. Some of the recent actions are discussed below.

California AB 36: This bill, which proposed to expand California’s fuel cell net energy metering (FC-NEM) program to include other efficient DNGG technologies, was vetoed by Governor Brown. The governor cited recent changes to the program and wanting to assess their effectiveness first. The goal of the bill was to make the FC-NEM program (with its 500 MW cap) technology agnostic and available to other technologies that meet certain emissions criteria. The decision keeps the larger cap exclusive to fuel cells. In a separate fuel cell development, new California projects have slowed in 2017 after new minimum biogas requirements were instituted in the Self-Generation Incentive Program.

California AB 1400: This bill, which prohibits recipients of microgrid funding from using those funds for diesel generators, was signed into law by Governor Brown in October. Though not exactly related to natural gas, this law continues a California lawmaking trend in aiming to limit carbon emissions—in this case as it relates to microgrids funded by the state’s Electric Program Investment Charge (EPIC) program. DNGG is not currently affected by this new law. These developments take place during a time of surging microgrid activity in California, with highlights including an active $44.7 million grant funding opportunity from the California Energy Commission and an active microgrid research roadmap.

Federal Investment Tax Credit: This credit for fuel cells, microturbines, and combined heat and power was a long-standing tax credit that expired at the end of 2016. House Bill HR 1, a tax bill, includes an extension for this credit, which if passed would provide a boost to these predominantly natural gas-fueled technologies. Note that the bill does not include this provision as of this writing. According to Navigant Research estimates for fuel cells, the credit is worth about $0.02/kWh throughout the system lifetime, which can significantly affect the economics of such systems.

Such policy developments have the potential to for significant effects on this dynamic industry. As renewables and storage receive significant governmental support, the relative merits of distributed natural gas will continue to be debated and judged. Regardless of the level of direct support of technologies like fuel cells, generator sets, and microturbines, the fundamental drivers of DNGG point toward a bright future.


Blog Articles

Most Recent

By Date


Clean Transportation, Digital Utility Strategies, Electric Vehicles, Energy Technologies, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Transportation Efficiencies, Utility Transformations

By Author

{"userID":"","pageName":"Energy Technologies","path":"\/tag\/energy-technologies","date":"12\/16\/2017"}