Navigant Research Blog

Data Centers and Military Microgrids: The Diesel Dilemma

— October 20, 2017

If something isn’t broken, why try to fix it? This kind of thinking sums up the perspective of many owners and operators of data centers. If they feel comfortable with the technology or solution that has been in place for quite some time, the incentive to enact something new and different is small. As a result, to maintain power for mission-critical loads, data centers have historically relied upon diesel generators linked to lead-acid batteries and (perhaps) dual feeds from two different utilities.

The Uptime Institute has created de facto data center industry standards that range from Tier I to Tier IV, with the latter representing the highest possible resilience. “Human beings have an almost emotional attachment to their diesel generators, as they give data center owners and operators both comfort and a form of insurance,” observed Chris Brown, CTO for the Uptime Institute. He does not see a decline in reliance upon diesel generators. According to Brown, “Engine generator usage will likely hang on, as the emotional tie and the form of insurance will still be present.”

Despite these insights, new data highlights how existing power infrastructure does carry risks for data centers. The average power outage cost for a data center in 2015 was $740,357—a 38% increase in the cost of downtime compared to 2010. Perhaps the most disturbing statistic found in Eaton’s Blackout Tracker Annual Report for 2016 is that the increase in maximum downtime costs rose to $2.4 million.

Military Base Parallels

One analogy to the challenge facing data centers is military bases in the United States. A typical large-scale military base may feature from 100 to 350 backup diesel generators, each hardwired to a single building. In many instances, they are sized at more than 200% of each building’s peak load as a contingency for energy security. Just a simple networking of existing diesel generators into a microgrid can offer cost savings for military microgrids and data centers alike.

A study by Pew Charitable Trusts found, for example, that creating a microgrid instead of relying upon standalone backup diesel generators reduces the cost of resilience by $1 billion or more. Note that the savings vary by region, with the greatest savings for those military microgrids deployed in the PJM Interconnection transmission control area. Yet, when displacing diesel backup generators with 50% diesel/natural gas fuel hybrid microgrid, California military bases boast the largest net savings. With a 50/50 portfolio of diesel/natural gas, microgrids in the PJM territory and the Southeast ironically show an increase in cost on a dollar-per-kilowatt basis if compared to the current reliance upon diesel backup generators. This is largely a result of low diesel fuel prices in those parts of the country, and it arguably points to the need to diversify power generation sources with a microgrid beyond fossil fuels.

Annual Net Cost of Protection ($/kW of Critical Load)

(Sources: Noblis, The Pew Charitable Trusts)

A new report by Navigant Research, Military Microgrids, notes that a key to innovation lies in new business models. The same could also be said for data centers. Data centers like to control their own destiny, which often means they want to own infrastructure. Yet, just like solar leases and third-party power purchase agreements accelerated the solar PV industry at a critical point in time in its development path, similar models could also bring microgrids into the mainstream.

Does such an approach hold promise for state-of-the-art data center microgrids? Schneider Electric would like to find out. Learn more at the upcoming webinar on October 24.

 

Service Providers Capitalizing on Smart Home Opportunity

— October 17, 2017

The smart home is a concept gaining hype and excitement with its futuristic promises. This market is projected to see significant growth, as Navigant Research expects smart home platform revenue to increase from $4.2 billion in 2017 to $39.5 billion in 2026. As discussed in our report, The Smart Home, a range of companies are vying for market share in this hotbed of opportunity, from startups to large tech incumbents.

Recently, I had a chance to attend the Service Delivery Innovation Summit, a conference bringing together a range of service providers to discuss innovations in the service business. Service providers are increasingly looking toward the smart home as a way to create new revenue streams as existing business models are challenged by newer offerings, such as traditional cable TV versus streaming services.

Who Can Take the Chance?

Service providers are arguably the best positioned to seize opportunity in the smart home. These companies are already trusted by consumers and have existing touchpoints and technologies deployed in the home, making it convenient and easy to go to market with smart home technologies. Because service providers are already in the home, they also have the unique position of being the gatekeeper for technologies that enter the home. Thus, service providers can profit from becoming smart home technology aggregators and can assist in solving many of the issues that exist in the smart home, such as technology interoperability, the comprehensiveness of solutions, and data privacy and security.

Additionally, broadband service providers and telcos offer products and services that support the development of smarter homes, such as cellular and broadband connectivity (which allows for the communication of connected devices and smart home data transmission). They can also use existing networks and infrastructure to offer new smart home-related services, such as professional installation and customer support.

Early Smart Home Investors

Some service providers are already making big investments in the smart home space. Comcast has been in partnership with EcoFactor to offer its EcoSaver thermostat-based energy management service to Xfinity Home customers since 2013. In 2016, the company partnered with Earth Networks (which has since spun off its home sensing and software company Whisker Labs) to bring big data and analytics to the EcoSaver service. In 2017, Comcast finished its acquisition of iControl, a home automation company. It will use the acquisition to build a Center of Excellence in Austin, Texas to wholesale its home automation and security services.

Service Providers Are Paying Attention

Comcast is just one example of a service provider ramping up activity in the smart home industry. Others such as energy providers Centrica and Vattenfall, as well as Telefonica, AT&T, Verizon, and Cox, are also offering home solutions. Service providers are increasingly recognizing the opportunity in this market and can help the progression of smarter homes.

 

Innovative Business Models Required to Drive Microgrids for Resilience

— October 17, 2017

The devastation caused by recent hurricanes in the Caribbean and southern United States has focused attention on the potential benefits of microgrids and local power generation. With widespread power outages and major damage to grid infrastructure, the opportunity to rebuild electrical systems with a more distributed and resilient architecture has never been clearer. Navigant Research’s new report Energy Storage for Microgrids highlights some the developments taking place in this emerging market along with the challenges that must be overcome to capitalize on the full potential of these technologies. The report explores innovations in business models that will be key to the growth of microgrids and distributed energy over the coming years, particularly in markets with significant financial constraints.

Protecting and Improving

Microgrids equipped with distributed energy storage, solar PV, and other forms of distributed generation can greatly enhance the resilience of the electrical system by preventing damage to a single portion of the grid from causing massive outages. This capability would be especially beneficial for islands such as Puerto Rico and the US Virgin Islands, which face frequent hurricanes capable of destroying transmission and distribution lines. In a centralized grid system, although power plants may still be operational after a storm, the energy they generate will be unable to reach customers. Microgrids with localized energy storage and generation are less susceptible to storm damage and can be brought back online more quickly, without damage in one area preventing service from being restored elsewhere. Furthermore, under normal conditions, microgrids provide numerous benefits to the grid by operating both independently and in a coordinated fashion to maximize the use of renewable energy without affecting grid stability.

Leveraging Financial Innovation to Drive Growth

Since microgrids are a relatively new technology platform, two major challenges that hold back new projects are the limited number of standardized solutions (despite some early plug-and-play offerings) and the limited financing options that reduce upfront investments and risks for customers. In the case of Puerto Rico and other islands with significant financial constraints, innovative business models will be critical for microgrids to spread.

Business model and financing innovations have been key drivers of growth in the solar PV industry over the past decade. Many of these same concepts are being applied to microgrid and distributed energy storage projects with the goal of negating the perceived risk of investing in new technologies. Some of the new models shifting risk and upfront investment away from customers include: power purchase agreements and leases with owner financing, software, energy as a service, and design, build, operate, and own models. New business models are being driven by the growing number of companies that leverage their backgrounds to provide microgrid solutions, including utility subsidiaries, energy service and technology providers, solar PV developers, and building energy management and controls providers.

Creating Opportunities

While the distributed energy industry races to help communities recover from recent disasters, it is critical that new technologies capable of reducing the effect of future storms be implemented. However, overcoming the lack of familiarity with these new systems and relatively high upfront costs will be a major challenge. The most successful companies in this industry will be those that can unlock the potential of new business and financing models to reduce the risk and upfront costs to customers. This ability to leverage private investment in infrastructure will be particularly important as countries with limited resources look to recover from massive damage while preventing similar issues in the future. In a webinar later this month, Navigant Research will explore the role of microgrids for improving resilience in another high profile area: data centers.

 

Microsoft Deploys Fuel Cells into the Core of World’s First Gas Data Center

— October 12, 2017

Fuel cells have been used to power data centers for years, with players including Apple, eBay, and Equinix all making big investments in the technology. But while most fuel cells power data center facilities from the outside, Microsoft just built a pilot data center with the fuel cells installed right on the racks. This is a shift that could radically simplify future data center infrastructure and improve energy efficiency in these energy-hungry facilities. The big investments noted above notwithstanding, fuel cells have only captured a small fraction of data center market share. New types of deployments like Microsoft’s data center could help drive fuel cells toward the segment’s mainstream.

A Unique Fuel Cell Application

The unique design routes natural gas piping directly to the server racks, which could help eliminate a significant amount of electrical wiring, gear, and controls typical to data centers. A photo from Microsoft’s blog post depicts at least five devices that appear to be fuel cells positioned atop the rack. At an assumed 5 kW-10 kW per rack, the 20 racks likely represent a load of 100 kW-200 kW. The deployment is a good fit for fuel cells since they can be readily scaled in size to match load. That is, a given system can add or remove individual cells or stacks to precisely match demand, a feat not possible with more monolithic alternatives like generator sets (gensets) or microturbines.

There are some potential challenges with this configuration. Installing that much fuel cell support infrastructure (exhaust flue, gas piping, and controls, etc.) could impose significant cost on installations, and maintenance on all those systems could be more taxing than on a single multi-megawatt system installed outdoors. And gas-powered systems generally face the challenge of gas grid outages. Though these are rarer than electric grid outages, they represent a concern—especially in seismic zones like those on the US West Coast. When an outage occurs, many data centers still rely on diesel backup generators since the fuel can be stored onsite. Despite these challenges, this type of deployment shows promise, thanks to ongoing fuel cell technology improvements and the low cost of natural gas.

New Players Enter the Arena

Microsoft mentions project partners McKinstry, a design-build construction firm, and Cummins, an engine and genset manufacturer. Though the fuel cell provider is not noted, Cummins teamed up with UK-based Ceres Power Holdings PLC to develop solid oxide fuel cells for data centers under a Department of Energy (DOE) award in 2016. The award specifies a minimum efficiency of 60% and a capacity of 5 kW scalable to 100 kW. That efficiency is slightly below the 65% (lower heating value) efficiency listed by Bloom Energy, which has largely dominated data center fuel cell deployments to date—though its systems are larger. Regardless of the approach, the high efficiency and consistent energy output of fuel cells is a good match for data centers at large.

While the current design operates on natural gas, a modified future system using pure hydrogen storage could help zero-carbon data centers incorporate intermittent renewable power. That is, the intermittency of renewables like solar PV has historically limited adoption on data center sites, which form a consistent load. If, however, that PV or wind system could generate hydrogen using an electrolyzer in a power-to-gas configuration, the energy could be stored to consistently power the data center via fuel cells. These types of innovations could represent a massive opportunity. According to Yole Développement, data centers used 1.6% of global power production in 2015 and are anticipated to grow to 1.9% in 2020. By any measure, the opportunities in this space loom large.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Digital Utility Strategies, Electric Vehicles, Energy Technologies, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Transportation Efficiencies, Utility Transformations

By Author


{"userID":"","pageName":"Energy Technologies","path":"\/tag\/energy-technologies","date":"10\/20\/2017"}