Navigant Research Blog

(Geo)Engineering a Climate Change Solution

— March 5, 2015

Climate engineering, or geoengineering, refers to the deliberate and large-scale intervention in the Earth’s climatic systems with the goal of reducing the effects of global warming. While I would argue that mitigation and fossil-fuel emissions reductions should be the primary course of action on climate change, it is also undeniable that achieving concerted and coordinated political action has been monumentally difficult. As outlandish as some geoengineering proposals may sound, changing the behavior of billions of people and overcoming the basic political and industrial challenges of drastically reducing fossil fuel consumption may prove to be even more difficult.

Although significant progress has certainly been made globally in the areas of renewable energy generation, energy efficiency, and improving transportation efficiencies, the international community as a whole has thus far failed to design and agree upon policies that will drastically reduce the amount of CO2 released into the atmosphere in any climate-impactful way.

More Research Needed

This lack of progress on climate change through emissions reductions leads to the conclusion that other approaches should at least be considered and adequately studied to determine efficacy. In early February, a panel of scientists at the National Academy of Sciences released a report arguing that more research on geoengineering needs to be conducted in order to better understand the associated risks and potential benefits. President Obama’s science advisor also publicly backed the initiative in 2010.

There are at least seven geoengineering proposals that are currently being hypothesized as potential climate intervention strategies:

  • Spraying sulfate aerosols into the atmosphere: While risky due to possible ozone layer deterioration, the idea is to reduce the Earth’s absorption of sunlight (much like ash from volcano eruptions).
  • Trapping CO2 in carbon scrubbers: Researchers at Columbia University are working on a carbon scrubber that would remove 1 ton of CO2 from the atmosphere per day. Projected to be available in 2 years, such scrubbers would cost $200,000 apiece, according to the Columbia scientists.
  • Fertilizing trees with nitrogen: This would theoretically increase the trees’ ability to absorb CO2.
  • Aerial Reforestation: Battling rampant deforestation, and the resultant loss of CO2 absorption capacity, airplanes would drop tree seedlings encased in biodegradable containers over large areas of land.
  • Adding powered limestone to the oceans: Such schemes would attempt to reduce ocean acidity and increase carbon sequestration.
  • Ocean iron fertilization: This process would increase the rate of photosynthesis in phyto-plankton in order to absorb more CO2.
  • Enriching soils with biochar: Biochar, a fine-grated charcoal that is highly resistant to decomposition, would hypothetically enrich soils and soak up excess CO2.

This is by no means an exhaustive list of proposals; reflecting sunlight back into space and many other ideas exist. However, it should be noted that there are also many legitimate controversies around geoengineering proposals. Spraying sulfate aerosols into the atmosphere, for example, could degrade the ozone layer. Many of the proposals are too expensive, and most offer an imperfect fix–even if the global average temperature of the earth is reduced, nothing would be done to stop the other consequences of fossil fuel burning such as ocean acidification and air pollution.

While no one knows for sure which  geoengineering proposals offer the most promise, I would argue that they should at least be more openly debated and further researched as a possible climate solution (particularly for a crisis situation where the reduction in CO2 needs to be immediate). Unfortunately, the international community has thus far made very little progress in addressing one of the world’s most serious problems, and in the case of climate change, we are in no position to reject promising ideas out of hand.


To Spread, Energy Storage Needs Hybrid Solutions

— March 4, 2015

Imagine a single energy storage system capable of serving all potential needs, from a short burst of high power to keeping the lights on for many hours. Such a system could greatly improve the overall economics of energy storage by removing limitations on the amount of revenue a single system can generate.

This is the focus of several leading companies that are looking to develop hybrid energy storage solutions, combining multiple different technologies in a single system. Energy storage technologies all have their ideal applications; some, such as flywheels, ultracapacitors, and certain lithium-ion chemistries are best at delivering high power over shorter periods of time. Others, such as compressed air and flow batteries, are ideally suited for applications that require a lower level of power to be delivered over a longer period of time. Combining technologies into a single system with the flexibility to perform multiple tasks, could greatly improve not only the economic returns on investment, but also the overall lifetime of storage systems.

Life Extension

Many hybrid energy storage systems are currently available or have already been deployed. Power grid giant ABB has been actively developing its flywheel business and is looking to hybrid systems to fully realize the benefits that flywheels can provide. The company has installed a hybrid flywheel/battery system on remote Kodiak Island, in Alaska. In this installation, two 1 MW flywheels handle the grid’s frequency regulation and high power needs, while the batteries provide the energy density required to fill in the gaps of local wind power generation. As short duration/high power needs are more frequent, this hybrid system reduces the number of times the batteries must be discharged, greatly extending the overall life of the system.

Hybrid systems involving ultracapacitors are also finding promising applications. A leading company in this space is the Spanish firm Win Inertia, which has partnered with ultracapacitor manufacturer Maxwell Technologies to offer an integrated hybrid storage system. The ultracapacitors handle the frequent, intense power requirements, allowing the batteries to be discharged less often. This allows the optimal use of high energy density storage technologies, as well as a rapid response to short term issues. Win Inertia is primarily focusing on the software, controls, and system-integration challenges to make this technology as effective as possible.

Beyond Single Applications

Integration with existing electrical grids presents a major software challenge for energy storage system integrators. When multiple types of storage technologies are integrated into a single system, these challenges become even more complex. The overarching goal of energy storage system integration is to ensure the longevity of a system and its constant availability in the market, thus maximizing the return on investment for system owners.

If these challenges can be overcome, the potential for hybrid storage systems is enormous. Standard storage systems are often designed for only one application, for example frequency regulation, which limits the potential revenue they can generate. Hybrid systems with the ability to meet multiple grid needs and capture multiple revenue streams can be much more economical. While advanced hybrid storage systems are only beginning to emerge, they could one day lead the energy storage market.


Reforms Drive Renewables, Grid Modernization in Mexico

— March 3, 2015

A recent ranking of the most attractive power markets for investors in Latin America, based on a survey conducted by BNAmericas of power sector stakeholders, places Mexico at the top. The updated rankings cite reforms to the country’s power sector, which are expected to allow for greater levels of private investment and a loosening of Mexico’s state-owned Comisión Federal de Electricidad’s (CFE) monopoly over the national power grid.

Mexico, which ranks 16th globally in installed generation capacity, is among the largest power markets in the world. Currently, CFE controls more than three-quarters of the country’s installed generating capacity and holds a monopoly on electricity transmission and distribution. The status quo has made it difficult for the country to keep up with rising electricity demand, effectively acting as a headwind for broader economic growth across the country.

Reform and Renewables

Although Mexico is heavily dependent on fossil fuels for power generation—representing 86% of delivered electricity—estimates suggest that it has sufficient resources to meet 50% of its generation demand with non-fossil fuels by 2050. Among non-hydro resources, geothermal, biomass, and waste are currently the most utilized. But like Chile, which previously topped BNAmericas’ rankings, Mexico is increasingly being seen as a haven for solar PV and wind development.

Energy sector reforms are designed to enable private firms to sell electricity to commercial and industrial consumers, as well as partner with CFE to finance, build, and operate transmission and distribution infrastructure. Private sector companies can participate through an open permitting process for independent power producers and self-supplied and combined heat and power (CHP) facilities that are typically located at industrial plants. Ultimately, these changes are designed to create a more competitive electricity market, according to Fitch Ratings, and to encourage the use of renewables by awarding clean energy certificates.

As a result of these reforms, private investment inflows could mirror similar trends already underway in Chile. According to some estimates, Mexico will add 66 GW of capacity to its power grid over the next 15 years, with investments in renewables potentially reaching $90 billion.

Wind as Well

U.S.-based solar firms see Mexico as among the countries with the highest growth potential. According to Navigant Research’s report, Global Distributed Generation Deployment Forecast, the country is expected to add more than 800 MW of distributed solar PV over the next decade.

Mexico is rapidly emerging as a substantial wind market as well, second only to Brazil among Latin American markets. Deregulation is expected to accelerate the wind market. The federal energy secretariat (SENER) has targeted 12 GW of new development by 2020. CFE plans to commission eight wind farms, totaling 2.35 GW of capacity, by the end of 2018, and private investors such as Iberdrola, Pattern Energy, and Cemex have announced significant investment targets for the same period. These investments, along with projects under development in Baja California and southern Mexico, are expected to help fuel a 5.5 GW expansion in wind capacity across the country through 2019, according to Navigant Research’s forthcoming report, World Market Update 2014 – Wind Energy.

Mexico’s power generation system is plagued by inefficiency and regulatory rigidity. It currently has the highest distribution losses among Organisation for Economic Co-operation and Development (OECD) countries. While the reforms are designed to liberalize the sector, a likely flood of new intermittent renewable generation capacity and customer-sited distributed generation will likely further strain Mexico’s already inefficient, old, and outdated transmission grid. These challenges are expected to drive an estimated $36 billion in emerging transmission, distribution, and grid modernization technologies over the next decade.


Islands Sail into Energy Storage

— March 3, 2015

Saddled with the highest electricity rates in the world (and threatened by climate change more than almost any other communities), many islands and isolated grids have opted to integrate wind and solar to replace expensive, imported diesel fuel. One challenge for these systems is that they do not have the benefit of calling upon neighboring systems to balance their wind and solar against load–leading to instability and insecurity of supply.

As a result, many remote grids are adjusting their technical requirements for connecting intermittent resources like wind or solar to the grid, requiring that these resources be firmed. In late 2013, for instance, Puerto Rico adjusted its technical requirements for connecting wind and solar assets to the Puerto Rican grid. This isn’t a direct requirement for energy storage specifically, but is a good fit for storage.

The Flywheel Option

Other island markets are betting on storage more directly. Aruba has committed to an aggressive plan to become 100% renewable by 2020 and has signed agreements with BYD and Temporal Power, as well as a power purchase agreement with Hydrostor in order to achieve its energy goals.

The typical applications in these markets are wind, solar, and diesel hybrids. In previous years, the most common technology for remote, isolated grid storage was advanced batteries. This was partly a function of availability and technology fit. Very few other storage technologies are modular–underground compressed air and traditional pumped storage require specific geologies–and few vendors were targeting the space. Moreover, the working assumption in terms of technology fit has been that a longer-duration storage system is more valuable than a short-duration storage system. Several flywheel vendors are disproving this assumption, however.

ABB’s Powercorp, for example, uses flywheel technology in remote microgrids, such as the BHP Billiton nickel mine in Western Australia and the Coral Bay community in Northwestern Australia. These are remote diesel-led systems.

Way Up North

Beacon Power has commissioned a demonstration project in St. Paul, Alaska, combining an existing plant, which includes a 225-kW wind turbine and 300 kW of diesel generators, with a 160-kW flywheel system. In this scenario, the flywheel system will enable the host utility to further improve wind utilization and deliver fuel savings of up to 30% over existing (pre-flywheel) consumption levels.

While it is still the case that some amount of long-duration storage is necessary in order to achieve very high renewables penetration on an isolated grid, flywheels are demonstrating that significant diesel savings can be achieved with as little as 30 minutes or less of storage.


Blog Articles

Most Recent

By Date


Clean Transportation, Digital Utility Strategies, Electric Vehicles, Energy Technologies, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Transportation Efficiencies, Utility Transformations

By Author

{"userID":"","pageName":"Energy Technologies","path":"\/tag\/energy-technologies?page=64","date":"3\/23\/2018"}