Navigant Research Blog

European Grids Look to RF Mesh Networks

— July 23, 2014

Communications networks for smart grids have evolved very differently in Europe than they have in North America, with power line communications (PLC) and cellular technology, thus far, as the leading forms of communications for smart meter connectivity across the pond.  Here in the states, the availability of unlicensed (free) spectrum in the 900 MHz band has led to the leadership of proprietary radio frequency (RF) mesh solutions, such as those provided by Itron, Silver Spring Networks, Elster, Tantalus, Landis+Gyr, and others.

The European Commission, however, has taken steps in recent months to bring 48 European nations into alignment on spectrum policy across the continent.  Specifically, for smart meters and smart grid applications (and other machine-to-machine [M2M] applications), the European Conference of Postal and Telecommunications Administrations (CEPT) announced in February a framework whereby 5.6 MHz of spectrum, from 870 MHz to 875.6 MHz, will be set aside for unlicensed M2M uses, including smart meters and grids.  Details can be found in CEPT’s Electronic Communications Committee (ECC) Report 189.

Indoor Reading

CEPT cited several reasons for supporting interoperability, including the creation of economies of scale and cost reduction, reduction in the risk of cross-border interference, and greater flexibility.  The choice of sub-1 GHz spectrum, where propagation characteristics are stronger than at higher bands, makes the spectrum suitable for reading meters that may be placed indoors, even in basements — a common practice in European nations.

Ofcom, the United Kingdom’s telecommunications regulatory body, this year made amendments to its Wireless Telegraphy Act that allow for commercial operations on a license-exempt basis at 870 MHz to 876 MHz as of June 27, 2014; similar action is likely across the 48 nations that participate in CEPT.

This is good news for vendors, like those named above, but also for utilities across Europe seeking more flexibility in their smart meter and grid deployments.  RF mesh solutions are often less expensive than PLC for near area networks, although that varies widely depending upon the structure of the grid in the region as well as the topography.  Nonetheless, some smart meter/communications solutions providers have struggled financially over the past couple of years after ramp-up for American Recovery and Reinvestment Act (ARRA) funding created a spike in demand that has since fallen rather sharply.

Room to Grow

Europe is poised to be the next big growth area for smart metering, thanks to the EU’s 20-20-20 initiative, which a majority of European nations support.  Navigant Research estimates that current penetration of smart meters across Europe is just 15%, compared with more than 40% in North America.  While several nations have made significant progress in deployment (Italy, Scandinavia), Germany isn’t yet on board with the 20-20-20 initiative, and the United Kingdom and France are just getting rolling.  In Eastern Europe, there has been minimal activity to date, particularly in Russia, home to nearly 100 million meters.  For details on Navigant Research’s global smart meter forecast, look for our report Advanced Metering Infrastructure, slated for publication later this year.

The Market for Smart Meters, Europe: 2013-2023

(Source: Navigant Research)

Smart meter shipments in North America are expected to total 121 million between 2014 and 2023; that total is forecast to be 221 million in Europe.  That’s more than $18 billion in anticipated revenue for smart meters — a market of which surely every smart meter vendor will take note.

 

In the Islands, Renewable Energy Scales up Rapidly

— July 22, 2014

Renewable energy project developers are touring islands these days, salivating at the opportunity to displace diesel-powered electricity systems that can cost as much as $1/kWh with significantly lower-cost clean power.  Prominent examples include Iceland, where, according to the country’s National Energy Authority, roughly 84% of primary energy use comes from indigenous renewable energy sources (the majority from geothermal); Hawaii, where energy costs are 10% of the state’s GDP, and where the state government has set a goal of reaching 70% clean energy by 2030; and Scotland (part of a larger island), with a goal of 100% renewable energy by 2020.  Several smaller, equally interesting island electrification initiatives present great opportunities for companies looking for renewable energy deployment opportunities that are truly cost-effective for customers and developers.

These opportunities include:

  • In Equatorial Guinea, a 5 MW solar microgrid planned for Annobon, an island with 5,000 inhabitants off the west coast of Africa, is intended to supply 100% of the power for residential needs.  The project is funded by the national government with power produced at a rate 30% cheaper than diesel, the current primary fuel source.  The project is scheduled for completion in 2015 and is being installed through a partnership between Princeton Power Systems, GE Power & Water, and MAECI Solar.
  • The Danish island of Samsø is the first net zero carbon island, where 34 MW of wind power generate more electricity than is consumed on the island.  Fossil fuels are still utilized, so  Samsø is not truly a 100% renewable energy island as often reported.  The project was conceived and designed as part of a 10-year process begun in 1997, following the Kyoto climate meeting in Japan.
  • The island of Tokelau, an atoll in the South Pacific, is home to 1,500 inhabitants and produces up to 150% of its electrical needs with solar PV, coconut biofuel-powered generators, and battery storage – displacing 2,000 barrels of diesel per year and $1 million in fuel costs.
  • El Hierro, the westernmost of Spain’s Canary Islands, is home to 10,000 residents.  With an innovative combination of wind power and pumped hydro acting in tandem, the island is projected to generate up to 3 times its basic energy needs.  Excess power will be used to desalinate water at the island’s three desalination plants, delivering 3 million gallons of fresh water per day.
  • The Clinton Global Initiative has a specific Diesel Replacement Program for islands, focused on deploying renewable energy projects and strategies tailored to the unique needs of its 20 island government partners.  The objective is not only to create cost-effective solutions to reduce carbon, but also to help many of these island nations reduce the often enormous debt that results from relying on imported diesel fuel for electricity.

There are many more opportunities, including Crete, Madeira, Bonaire, La Reunion, the U.S Virgin Islands, and the Philippines (7,127 islands) – which last summer set a 100% renewable energy target within 10 years.

Not all of these projects, particularly the more sophisticated ones, have gone smoothly.  The logistical challenges of island construction add to the overall cost of the projects.  The risk of extreme tropical weather events is always present, including the risk of actually being underwater if sea levels rise as anticipated.  Thus far, financing for many of these projects has come from public-private partnerships, and as I’ve written previously, the coming avalanche of adaptation funding means those avenues are expected to be around for the foreseeable future.  But given the strong economic arguments for residential systems, resorts, agriculture, and other energy-intensive applications that often rely on diesel power for electricity, onsite distributed projects often pencil out without public assistance.

 

Amid Global Turmoil, Oil Prices Oddly Stable

— July 18, 2014

The world has entered a zone of maximum upheaval.  From the Atlas Mountains of North Africa to the Hindu Kush, in Afghanistan, the Middle East is in flames.  The destruction of a Malaysian airline over Ukraine, almost certainly shot down by Russian-backed separatist rebels, threatens war in the Black Sea region.  Libya is being torn apart by competing militias, while parts of Iraq are under assault by the murderous Islamist force known as ISIS.  Syria remains a bloody horror show, and Israeli troops have launched a ground invasion of Gaza.  At no time since the terror attacks of 2001 has the world seen such conflict and instability.

So why aren’t oil prices higher?

Prices spiked briefly after the news on July 17 that Malaysian Air flight 17, en route from Amsterdam to Kuala Lumpur, was shot down by a surface-to-air missile fired from eastern Ukraine.  U.S. oil futures rose $1.99 a barrel, up 2% on the New York Mercantile Exchange, to reach nearly $104.  That was the largest one-day jump since June 12, when ISIS launched its offensive in Iraq, according to The Wall Street Journal.  But markets quickly calmed: the next day, benchmark crude had retreated below $103 a barrel on the NYME.  The shocks of recent days had caused a tremor across world petroleum markets, not a tsunami.

No Lost Sleep

“At any given point of time, global financial markets are always at risk from geopolitical disturbances, but this time around nobody’s losing sleep over it,”  wrote Malini  Bhupta in the  Business Standard, India’s leading economic newspaper, in a column headlined “Markets shrug off geopolitical risks as oil prices remain stable.”

Before the latest outrage in Ukraine, oil prices had actually been easing: in mid-July U.S. crude fell below $100 a barrel for the first time since May.  That’s not to say that prices aren’t high; as Steve LeVine, of Quartz, points out, geopolitical disturbances have removed around 3.5 million barrels of oil a day from world markets since last fall, and if the world were a more stable and peaceful place, oil prices would likely be well below $100 a barrel.  But given the current unrest, a price per barrel of $125, or higher, would not be startling.

The ability of the market to absorb multiple shocks and keep prices relatively stable is an indication of structural changes that have taken place in recent years.

Awash in Conflict, and Oil

According to Liam Denning, writing in The Wall Street Journal’s “Heard on the Street” column, the “forward curve” – the price of oil scheduled for delivery months or years in the future, based on the trade in futures contracts – has flipped in recent weeks, meaning that prices for contracts nearer in time are now lower than those further out.  When the curve slopes upward like that, it’s an indication that supplies are plentiful.  “The global oil market no longer looks quite so panicked about Iraq,” commented Denning.

More broadly, the world’s supply of oil has been climbing for years, and continues to do so despite the current crises.  What’s more, the sources of that supply have diversified; the Middle East no longer has as a dominant role in world production as it did 10 or even 5 years ago.

Defying “peak oil” predictions, world crude production increased roughly 50% over the last 30 years, rising from about 50 million barrels a day in 1983 to 76 million in 2012.  Regions that were negligible producers before the turn of the century are now significant oil suppliers: Africa’s production has doubled since 1983, as has South America’s.  Despite the current civil war, oil production in Iraq has soared, growing from about 300,000 barrels a day in 1991 to 3 million in 2012.  Driven by new drilling in the tar sands, Canada has more than doubled its production in the last 20 years.

And then, of course, there’s the United States, which in 2011 became a net exporter of petroleum products for the first time since the post-World War II era.  In  short, the world is awash in petroleum, and barring an all-out war between Putin’s Russia and the West, is likely to remain that way for some time.

 

How Can the United States Pay for Road Upkeep?

— July 17, 2014

More vehicles throng U.S. roads each year, expansion necessary to support them and with less money to fund road repairs.  The root of the problem is that road construction funds are largely derived from taxes on gasoline and diesel fuel, and U.S. consumption of both is declining and will continue to decline.  The increasing fuel economy of new vehicles combined with rising penetrations of alternative fuel vehicles (AFVs) is having a marked impact on U.S. fuel demand.

In the upcoming report Global Fuel Consumption, Navigant Research forecasts that liquid fuels (gasoline, diesel, and biofuels) consumed by U.S. vehicles will decrease from approximately 160 billion gallons in 2014 to around 104 billion gallons in 2035.  Meanwhile, forecasts from the Navigant Research reports Light Duty Vehicles and Medium and Heavy Duty Vehicles indicate that the U.S. vehicle fleet will grow from approximately 250 million to nearly 270 million in 2027 before beginning a slow decline.

More Per Gallon

If the status quo funding mechanism is maintained, annual federal gasoline and diesel tax revenue will decline from current levels of about $30 billion to near $20 billion in 2035.  Meanwhile, over the same time, the fleet of vehicles in use will grow by 10 million.  However, in the near term, the federal Highway Trust Fund and Mass Transit Fund are headed for insolvency before the end of the year.

A number of short-term funding options have been proposed that will likely push a decision on a long-term solution out past the November mid-term elections.  However, one long-term solution emerged last month from two U.S. senators who proposed raising the federal gasoline and diesel tax by $0.06 per gallon over 2 years and then indexing the tax to inflation for following years.  The tax has been stagnant since 1993, at $.184/gallon of gasoline and $.244/gallon of diesel.  Raising it would probably be the easiest long-term solution to implement, since the machinery for tax collection is already in place.

U.S. Federal Gasoline/Diesel Tax Revenue and Vehicles in Use, United States: 2014-2035

(Source: Navigant Research)

What this proposal has in ease of implementation, though, it lacks in political appeal and fairness.  Taxes are a bitter pill for any Republican member to swallow, and pushing through a hike on gasoline and diesel, no matter how small or sensible, is likely to be impossible.  Additionally, as the tax stands now and the proposal will maintain, motorists who drive newer fuel efficient vehicles pay less tax, and those who drive AFVs pay no tax per mile driven, despite that they are using the same roads as owners of less fuel efficient conventional vehicles who bear more of the tax burden.  As the tax was designed to make those who use the road pay for the road, the above scenario is an unintended consequence to the advantage of alternative fuel and fuel efficient vehicle owners.

Dollars Per Mile

In early 2009, Secretary of Transportation Ray LaHood recommended that the federal government should look into a vehicle miles traveled (VMT) tax.  The VMT tax would clock vehicle owners’ mileage and then tax them on a per-mile basis.  While this solution would not be easy to implement, it would be a fair way of collecting taxes in line with the original purpose of federal gasoline and diesel taxes.  It could also be used as a tool to manage traffic along specifically congested corridors.

Despite the suitability of a VMT tax, it is unlikely it will emerge as a legitimate policy option in the near term, due to a lack of political support and a tested method for implementation.  Rather, owners of older conventional vehicles will likely pay more at the pump – or traffic is only going to get worse.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Energy Storage, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Utility Innovations

By Author


{"userID":"","pageName":"Finance & Investing","path":"\/tag\/finance-investing","date":"7\/29\/2014"}