Navigant Research Blog

Innovation Is Booming in the Water Industry

— April 9, 2014

As part of the events to mark World Water Day, the United Nations (UN) has launched a new report highlighting the challenges of ensuring an adequate global water supply over the coming decade.  In particular, the World Water Development Report focuses on the growing interdependency of water and energy.  The report looks at the water industry’s energy requirements for production, distribution, and treatment, as well as at the growing demand for water resources from the energy industry.

We have written about the impact of the growing global demand for water before, but the World Water Development Report yet again highlights the challenges ahead.  According to the report, water demand will increase by 55% by 2050, with the biggest impact coming from the growing demand from manufacturing (400%), thermal electricity generation (140%), and domestic use (130%).  More than 40% of the global population is projected to be living in areas of severe water stress through 2050.

Countries, cities, and communities need to improve their ability to assess and plan for future water needs.  However, developing new water supplies, storage facilities, or treatment plants will remain a hugely expensive endeavor, and so the industry must look to technologies that can mitigate the need for capital investment by improving the efficiency of existing systems and maximizing the benefits of new investments.  For this reason, we are seeing a host of innovative technologies and solutions targeted at the water industry.  Entrepreneurs and developers from the IT, telecom, and smart grid sectors are now looking to water as the next industry where they can make a major impact on the way the business operates.  This opportunity is attracting a wide range of technology and service suppliers, including established water metering vendors, water network engineering companies, water service companies, infrastructure providers, IT software and service companies, and a variety of startups and innovators.

The recent World Water-Tech Investment Summit in London gave me a good opportunity to survey a range of companies.  Among a host of other innovators at the show were companies we looked at in our Smart Water Networks report, including TaKaDu, which has been pioneering the use of cloud-based analytics for leak detection.  Also present was i2O, which is providing water utilities with an intelligent pressure management solution that also uses cloud-based advanced analytics, but integrates them directly into the pressure management system.  Other companies new to me included Acoustic Sensing, a U.K. startup that has developed a new acoustic sensing solution to allow the rapid identification of structural defects and blockages in sewerage systems; Syrinix, another U.K. company that provides intelligent pipe monitoring systems for burst detection and pressure monitoring, among other applications; IOSight, an Israeli-based company providing advanced business intelligence and data management for the water industry; and Optiqua, which provides sensor networks for real-time water quality monitoring.

Keeping Afloat

While there is no shortage of innovation in the industry, it is still a challenge to find ways of investing in new technologies in a heavily regulated industry.  With no stimulus funding or mandated smart meter rollouts to boost the market, the industry needs to find other ways to finance innovation.  One option is the use of a software-as-a-service (SaaS) model to defer capital expenditures and reduce resource needs.  For example, both TaKaDu and i20 provide their software as a cloud-based service.  Innovative approaches to regulatory and investment programs will also be important.  In the United Kingdom, OFWAT is currently working with the country’s water utilities on the next regulatory pricing period, to run from 2015 to 2020.  The aim is to increase the ability of utilities to invest in water metering and other networks’ management technologies.

The smart water market is attracting a wide range of new players and presenting established players with the opportunity to expand their business into new areas.  Both sets of players face challenges in an industry that is hungry for change but also conservative in its operations and restricted in its financial options.  As stated in our Smart Water Networks report, while there are strong drivers for growth, the challenges of transforming a conservative industry faced with a physically and technically challenging deployment environment mean that the growth in this market will always be steady rather than explosive.  However, the direction of travel is clear.

 

Distributed Energy’s Big Data Moment

— April 9, 2014

As my colleague Noah Goldstein explained in a recent blog, the arrival of big data presents a multitude of challenges and opportunities across the cleantech landscape.  Within the context of distributed energy resources (DER), among other things, big data is unlocking huge revenue opportunities around operations and maintenance (O&M) services.

As illustrated by large multinational equipment manufacturers like GE and Caterpillar, big data represents not only a potential key revenue source, but also an important brand differentiator within an increasingly crowded manufacturing marketplace.  Experience shows, however, that capitalizing on this opportunity requires much more than integrating sensors into otherwise dumb machinery on the factory floor.

The recent tragedy of Malaysia Airlines Flight 370 brought international focus to the concept of satellite pings whereby aircraft send maintenance alerts known as ACARS messages.  These types of alerts highlight the degree to which O&M communication systems are already in place in modern machinery.  But Malaysia Airlines reportedly did not subscribe to the level of service that would enable the transmission of key data to Boeing and Rolls Royce in this instance.  Although data may be produced via a complex network of onboard sensors, it is not always collected in the first place.

The collection and utilization of big data is not necessarily as simple as subscribing to a service, however.  Today, the sheer volume of data produced by industrial machinery is among the main challenges facing manufacturers of DER equipment.

A Different Animal

Bill Ruh, vice president and corporate officer of GE Global Software Center, which helped lead GE into the big data age in 2013, describes the Internet of sensors as a very different animal than the Internet used by humans.  While “the Internet is optimized for transactions,” he explains, “in machine-to-machine communications there is a greater need for real time and much larger datasets.”  The amount of data generated by sensor networks on heavy equipment is astounding.  A day’s worth of real-time feeds on Twitter amounts to 80 GB.  According to Ruh, “One sensor on a blade of a gas turbine engine generates 520 GB per day, and you have 20 of them.”

Despite volume-related challenges, this opportunity proved too lucrative for GE to pass up.  Estimating that industrial data will grow at 2 times the rate of any other big data segment within the next 10 years, the company launched a cloud-based data analytics platform in 2013 to benefit major global industries, including energy production and transmission.

Similarly, Caterpillar is one of the latest industrial equipment manufacturers to recognize the value of streaming a torrent of real-time information about the health of products in order to generate new revenue.  Already integrating diagnostic technologies into its nearly 3.5 million pieces of equipment in the field, the company launched an initiative across its extensive dealer network aimed at leveraging big data to drive additional sales and service opportunities.  Currently, the company’s aftermarket business accounts for 25% of its total annual revenue.  As Caterpillar and other companies manufacturing energy technologies have realized, a healthy pipeline of aftermarket sales and service opportunities is of vital importance to market competitiveness in an increasingly competitive manufacturing landscape.

With distributed power capacity expected to increase by 142 GW according to a white paper published by GE in February, the addressable market for aftermarket DER data is rapidly expanding.  Despite these opportunities, data analytics still represents a mostly untapped opportunity for manufacturers of emerging DER technologies.  Allowing manufacturers and installers of everything from solar panels to biogas-fueled generator sets (gensets) to closely monitor hardware performance, better utilization of data has the potential to not only drive aftermarket service offerings, but also accelerate return on investment (ROI) through better optimization and greater efficiency.  And this is a highly valuable differentiator for a class of technologies still scrambling for broad grid parity.

 

Cellulosic Biofuels Not Dead

— April 4, 2014

Risk_webCellulosic biofuels have multiple advantages over conventional biofuels like ethanol and biodiesel.  Primary among the advantages is that the fuel’s feedstock is agriculture waste, which means it avoids controversial topics like the food versus fuel debate and direct or indirect land use change concerns.  Despite these advantages, hope for cellulosic biofuels has eroded because multiple companies have failed to produce the fuel at scale and a competitive price point.

The many failures forced the U.S. Environmental Protection Agency (EPA) to cut the annual volumetric blending requirement for cellulosic biofuels mandated by the Renewable Fuel Standard (RFS) to levels ranging from 6 million gallons to 9 million gallons between 2010 and 2013.  For 2014, the EPA has proposed cutting the original volume requirement for cellulosic from 1.75 billion gallons to 17 million gallons.  Additionally, KiOR, the company closest to producing cellulosic biofuels at scale, has run into financial stumbling blocks.  This situation is leading some to question whether cellulosic biofuels will ever take off.  But while the industry has certainly appeared to be on the brink, investors do still have hope, as demonstrated by Cool Planet’s successful closing of $100 million Series D financing at the end of last month.

Saving Cellulosic Biofuels One Plant at a Time

Cool Planet has often been described as similar to KiOR, as the two companies take cellulosic biomass and convert it to hydrocarbons chemically identical to petroleum-based fuels.  The two companies are, however, also “dramatically different,” as described in interview with Cool Planet’s CFO Barry Rowan.  The most significant differences are related to Cool Planet’s novel approach to production plant development, the production process, and the development of the company’s propriety biochar, CoolTerra.

Rather than focusing on one or more major production facilities, Cool Planet will develop numerous small-scale (10 million gallons per year) plants.  This approach has multiple advantages.  First, it reduces risk to investors, as each small capacity plant is significantly less costly than one giant facility.  Second, the development costs of each new plant are reduced and production margins improved since Cool Planet is able to innovate on lessons learned from past plant developments.  Third, it allows Cool Planet to bring the plant to the biomass rather than the biomass to the plant.  This reduces the transport costs for the cellulosic biomass and insulates Cool Planet against feedstock shortages.  Rowan notes that the capacity of each plant is limited to a fraction of a region’s cellulosic resources.

Cool Planet can use a variety of cellulosic feedstocks, which the company exposes to high temperature and pressure to create a biovapor.  The biovapor is then converted to a high octane gasoline blend stock.  In contrast, KiOR’s process produces a biocrude oil, which is then refined into gasoline and diesel products.  When put through a proprietary catalytic column, the biovapor created by Cool Planet’s process produces the biofuels and a residual biochar – both of which have markets.

The biochar produced from the biofuels development is then treated by Cool Planet to create the company’s proprietary product, CoolTerra.  According to the company, which has five PhDs working on this product, trial results show improved crop yields and growth rates, as well as reduced water and fertilizer input requirements.  The resulting impact is a fuel that is carbon-negative; any carbon produced is sequestered in the CoolTerra, which will be used to produce carbon-absorbing plants and thus reduce atmospheric carbon concentrations.

Development of Cool Planet’s first 10 million gallon facility located in the Port of Alexandria, Louisiana is underway; the plant should be operating by 2015.  The development of two other plants in Louisiana is scheduled to follow in 2015 and 2016.  Rowan estimates Cool Planet can be profitable at oil prices of $50 per barrel, well below today’s rate.  Real world tests of Cool Planet’s business model will demonstrate its viability.  If anything can be gleaned from the recent struggles and successes of KiOR and Cool Planet, it’s that the industry is not dead; rather, it is simply taking longer to adapt to technological and logistical problems than expected.  And it’s clear investors believe Cool Planet may have a winning approach.

 

Electricity Pricing and the Economics of EVs

— April 2, 2014

The hottest global market for plug-in electric vehicles (PEVs) is Norway, where PEVs accounted for nearly 5.5% of all light duty vehicle sales in 2013.  Success of PEV sales in Norway has been credited to the country’s attractive purchase incentives and tax breaks, which include exemption from all non-recurring vehicle fees, annual road taxes, all public parking fees, and toll payments, along with free access to bus lanes.  While these incentives are appealing, equal credit goes to the massive price gap between the costs of petroleum fuels and electricity in the country.

One of the most attractive aspects of PEVs is that driving on electricity is significantly cheaper than driving on gasoline or diesel.  While this is largely true in most markets, the price difference can vary significantly by market.  The most meaningful variables in fuel cost returns are the retail price of petroleum-based fuels, the residential rates for electricity (since a vast majority of PEV charging is done at the owner’s home), and the average efficiency of new conventional vehicles compared to PEVs.

The Turkish Premium

The price of retail gasoline and diesel varies sharply from country to country.  The starkest example is in Turkey and Iran: in 2012, a gallon of gasoline cost $9.61 in Turkey (highest in the world) and $1.25 in neighboring Iran.  Electricity prices are also vastly different from country to country; residential electricity rates per kilowatt-hour (kWh) in France, which gets 80% of its electricity from nuclear power, are half the rates as those in Germany.  The variation in prices for each fuel determines which markets offer the best returns for PEV owners.

The best returns on fuel costs in Europe are in Norway and the worst are in Germany.  If the average new light duty vehicle in Europe has an mpg rating of 35 and the average new PEV has a miles per kWh rating of 2.7, then on a per-mile basis, Norwegian PEV owners save $0.16 per mile while German PEV owners save only $0.05.  Given that Germany’s incentives for PEVs are far less attractive than Norway’s, it’s not surprising that the Scandinavian country (population just over 5 million) still put around 1,500 more PEVs on the road last year than did Germany (population just over 80 million).

State to State

Among U.S. states (average new vehicle mpg is now 25) the best returns are in Indiana ($0.11 per mile) and the worst are in Hawaii ($0.03 per mile).  Given current government incentives, maintenance cost reductions, an annual vehicle mileage of 12,000, and an average $12,000 premium for PEVs, a battery electric vehicle (BEV) driven in Indiana nets a return in less than 4 years – twice as fast as one driven in Hawaii.

Fuel Costs per Mile of Fuel, Select Regions: 2014

Pricing-Economics of EVs blog (04-02-14)

(Source: Navigant Research)

Because PEV returns are so varied, local utilities can significantly affect markets by introducing time-of-use (TOU) electricity rates specific to PEV owners.  TOU rates, which incentivize off-peak electricity usage, can drastically reduce per kWh prices for PEV charging.  Residential TOU rates are limited, for now, to a few utilities in the United States.  Their adoption, however, is a win-win for utilities.  TOU rates can increase utility revenue by making market conditions for PEVs better, thus increasing demand for electricity, and TOU rates shift the increased demand to manageable off-peak hours.  The final outcome is one in which utilities make more money and drivers save more money.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Energy Management, Energy Storage, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Grid Practice, Smart Transportation Practice, Utility Innovations

By Author


{"userID":"","pageName":"Finance & Investing","path":"\/tag\/finance-investing","date":"4\/17\/2014"}