Navigant Research Blog

The Vulnerable Electric Grid Might Be Tougher Than You Think

— April 10, 2018

The ongoing struggle to keep the US electric grid safe from attacks can seem like a losing proposition, especially given recent reports of Russian-sponsored hacking attempts and a serious warning about increasing vulnerability. However, there are quieter accounts of progress among those working to keep the grid safe.

Berkeley Lab Threat Detection Tool

One is a 3-year project led by Berkeley Lab researchers and supported by several key partners that features a new tool to detect cyber-physical attacks. The researchers designed a new architecture that combines a micro phasor measurement unit (μPMU) that captures data about the grid’s physical state with information from commonly used SCADA monitoring systems. Together, the combined data provides real-time feedback about grid performance through a redundant set of measurements with high fidelity. The idea is to bridge the gap between the physical world and the cyber world and find discrepancies that could indicate certain types of attacks are underway against grid components.

The Department of Energy (DOE) supported Berkeley Lab project is moving to the technology transfer stage, with the team preparing a final report and meeting with industry stakeholders to introduce them to this novel security framework. Partners on the project included EnerNex, EPRI, Riverside Public Utilities, and Southern Company.

Insurance Model to Protect the Grid?

In what seems like a stretch, two University of Wisconsin-Milwaukee researchers are investigating the potential of a new insurance model aimed at motivating utilities and regulators to invest more in cybersecurity assets. The idea is to support utilities implementing high cybersecurity tools with lower insurance premiums, and to penalize those with low cybersecurity processes with higher premiums. The two have funding from the National Science Foundation to build predictive models in a project that blends several disciplines, including electrical engineering, computer science, actuarial science, and statistics. More to come on this front, for sure.

Going Retro for Grid Security?

Meanwhile, there is a move in Congress to support older style tools to help safeguard the grid. The retro effort comes in the form of a senate bill that, if passed, would direct the national laboratories to partner with private companies to identify analog approaches that do not rely on digital infrastructure or tools. According to senators supporting the bill, the idea springs from the 2015 cyber attack on Ukraine’s energy grid in which operators restored power relatively quickly using human-powered or analog systems instead of digital. The bill is not without critics, one of whom claims it is a mistake to look backward for answers such as the ones proposed, though he applauds the focus being placed on enhanced security.

So the Grid Could Be Okay?

The takeaway from these disparate and under-the-radar efforts should be a sense of calm that not all is doom and gloom when it comes to grid security. The grid might be tougher than you think. The good guys are working on new solutions, too (be sure to check out Navigant Research’s recent report, Managing IoT Cybersecurity Threats in the Energy Cloud Ecosystem). Some solutions might have limited effects, like going retro, but there is hope future attacks will be countered with robust defenses that thwart attacks and keep the grid safe.

Power Standards Lab μPMU

Note: Developed at Power Standards Lab under a project led by Berkeley Lab and funded by DOE’s ARPA-E program, µPMUs are designed to increase situational awareness at the power distribution grid level.

(Source: Power Standards Lab)

 

Resilience Movement Hits the West Coast

— August 1, 2016

GeneratorThe focus of state programs designed to boost resilience have been microgrid and nanogrid projects on the East Coast launched in response to extreme weather events such as Hurricanes Irene and Sandy. Since 2011, a parade of states have launched state-funded programs: Connecticut; Maryland, Massachusetts; New Jersey; New York, Rhode Island, and Washington, D.C., among others. A quick glance at some statistics underscores why governments see value in public investments to improve the resilience of regional power grids.

Since 1980, the United States has sustained more than 144 weather disasters with damages reaching or exceeding $1 billion each. The total cost of these 144 events exceeds $1 trillion, according to the U.S. Department of Commerce. According to the president’s U.S. Council of Economic Advisers and the U.S. Department of Energy (DOE), severe weather-related electricity outages cost the U.S. economy more than $336 billion dollars between 2003 and 2012.

Resilience in San Francisco

The perception that this resilience movement is an East Coast phenomenon is being challenged by a program launched in San Francisco. Rather than being focused on threats that can be anticipated via new weather forecasting techniques, the program is focused on a threat somewhat confined to the West Coast: earthquakes.

What would happen to the electricity and natural gas infrastructure of San Francisco if an earthquake equivalent to the 1906 event occurred today? A project developed by the City and County of San Francisco’s Department of the Environment looked into that question. Entitled the Solar+Storage for Resiliency project, the early results of modeling are quite sobering. While 96% of the city’s consumers could expect their electricity to be back online within 1 week, it would take as long as 6 months for the natural gas infrastructure to be fully operational. (To get back to full-scale provision of electricity would take 1 month.)

Reports from Connecticut showed that natural gas continued to flow through extreme weather, hence its focus on fuel cells and fossil fuel generation as the cornerstone of its efforts toward resilience. San Francisco is taking a different approach, focusing instead on distributed solar PV linked to advanced batteries while incorporating existing diesel generators into the solution mix.

After an extensive and interactive mapping exercise located critical facilities throughout San Francisco, sites were analyzed for available rooftop space for solar PV and the logistics of installing batteries. Projects that could be installed under existing regulatory restrictions were also prioritized. The end result is roughly a dozen projects scattered throughout the city that would offer resilience in the most sustainable manner possible using current technology. So far, funding for initial groundwork for this microgrid portfolio has come from a $1.2 million grant from the U.S. DOE’s SunShot initiative.

Emergency Response Programs Lead to Economic Opportunity

Though a common perception is that diesel generation is the most reliable backup power supply, reports from the field beg to differ, as failure rates can be extremely high. The vulnerability of San Francisco’s natural gas infrastructure also required a different approach. Given recent advances in smart inverters capable of safe islanding and the declining costs of energy storage, it appears that the San Francisco approach is not only uniquely qualified to address the unpredictability of earthquakes—but also represents a more sustainable and climate-friendly approach to community resilience.

So far, vendors such as SMA, Tesla, and Saft have been involved in the modeling of these systems to be installed in the coming years. While a program with the noble goal of emergency response, the community resilience microgrid market also represents an economic opportunity. Under a base scenario, the market is projected to reach $1.4 billion globally by 2024.

 

High Resolution Sensors Open New Windows onto the Grid

— March 26, 2015

The advances in transmission and distribution (T&D) system sensors, communications, and visualization technology are remarkable. At DistribuTECH 2015, I was able to talk to key vendors in the T&D marketplace, including established players, such as ABB, GE, Landis & Gyr, Schweitzer Engineering Laboratories (SEL), and Siemens, as well as emerging companies, such as Genscape on the transmission grid and Tollgrade on the distribution grid, which both offer innovative new monitoring and visualization solutions. These relatively young companies are taking the industry to a next level in sensor technology, wireless communications, and visualization/analytic tools.

While Genscape is a new entrant in the transmission operator/utility marketplace, it operates the world’s largest private network of in-the-field monitors, providing cloud based software as a service (SaaS) applications for market intelligence across the power, oil, natural gas, petrochemical, agriculture, biofuels, and maritime freight sectors. The company’s applications are used by most energy trading companies, and are used to non-intrusively monitor generation plant outputs, outages, and other transmission line conditions.

Unbound

Genscape has a wide range of customers in electric power trading and oil & gas commodity markets.  With the recent acquisition of Promethean Devices in 2014, Genscape also provides high resolution, sub-second transmission line monitoring of current, conductor sag/clearance, conductor temperature, and voltage, using an easy to deploy ground based solar powered sensor system. With the high cost of land-based fiber systems typically installed by utilities, Genscape’s solution offers an elegant and relatively inexpensive cloud-based solution.

Focused primarily on the medium-voltage (MV) and low-voltage (LV) distribution grid, Tollgrade offers bolt-on line sensing units with high speed wireless communications capabilities, as well as a cloud-based SaaS optimization and visualization tool set that can be tied into a utility’s distribution automation system. The company’s fault-detection hardware and predictive analytics software are designed to assist distribution network operators in avoiding network outages and reducing customer downtime. The sensing units are low cost and can be installed by a distribution system lineman in minutes at any location on the distribution system.

The really striking thing about Tollgrade’s technology is the analytics and visualization tools, which can be used to drill down in outage and fault data to screen, locate, and then analyze breaker trips and outages anywhere on the monitored portions of the distribution network in real time.

Both of these companies have the potential to significantly change the level of visibility into T&D grid performance, providing tools for understanding the disturbances that are never seen in the data typically collected by utilities using conventional solutions.

 

In Detroit, a Utility Comes to the Rescue

— January 14, 2015

In early December, the municipal power system in Detroit had a major power outage that was thankfully restored by DTE Energy (DTE), the investor-owned utility that stepped in to lend a helping hand.  The Detroit municipal system supplies power to city buildings such as courthouses, hospitals, city offices, and schools, as well as critical local infrastructure such as traffic lights, municipal transportation, and fire departments.  Even the Detroit Red Wings hockey practices were disrupted by the power outage.  Fortunately, with the help of DTE, the outage was restored within 9 hours and life in Detroit was back to normal.

As news of the municipal power system outage spread, it was initially speculated that this power failure was another glaring example of the lack of ongoing investment in critical infrastructure that occurs when a municipality goes into bankruptcy.   The good news is that, as part of the bankruptcy process, Detroit will no longer run the electric system; DTE will begin running the grid over a 4-year transition period.  DTE’s deeper pockets will restore the high standards of operation for the Detroit municipal system.

The Beleaguered City

Detroit’s woes have been national news over the past 3 or 4 years, as illustrated by the many pictures of abandoned neighborhoods, factories, churches, and commercial buildings.  In fact, Detroit’s mayor, Mike Duggan, said at a news conference on Tuesday, December 2, 2014 that, “Today is another reminder of how much works we still have to do to rebuild this city, and the bankruptcy order doesn’t solve the decades of neglect in our infrastructure.”  The mayor’s spokesperson, Robert Warfield, went on to say that the outages were “caused by extreme heat, cable failure, and routine maintenance – all combining causing system overload.”  Apparently, a cable feeding a critical substation failed, and the municipal utility tried to reroute the system, triggering a circuit breaker, which caused the blackout.

Spirit of Cooperation

During 2014, I wrote a number of blogs on various utility transmission and distribution issues that arise and the investment required to keep the lights on.  These issues are also discussed in detail in Navigant Research reports, including High-Voltage Transmission Systems, Flexible AC Transmission Systems, Synchrophasors and Wide Area Situational Awareness, and Smart Grid: 10 Trends to Watch in 2015.   Over the years, I have seen neighboring and even distant utilities step in to help utilities in another state or region restore power after a natural disaster, storm, or power failure.  DTE’s work to make sure the lights stay on in Detroit is another great example of the spirit of cooperation within the electric utility industry.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Digital Utility Strategies, Electric Vehicles, Energy Technologies, Finance & Investing, Policy & Regulation, Renewable Energy, Smart Energy Program, Transportation Efficiencies, Utility Transformations

By Author


{"userID":"","pageName":"Grid Resilience","path":"\/tag\/grid-resilience","date":"5\/24\/2018"}