Navigant Research Blog

Wireless Bulbs Offer Connected Light Controls

— October 20, 2014

Homeowners around the world have begun to transition from incandescent and compact fluorescent bulbs (CFLs) to more efficient and higher quality light-emitting diodes (LEDs).  Navigant Research’s report, Residential Energy Efficient Lighting and Lighting Controls, forecasts that LED sales for residential applications will increase at a compound annual growth rate of 17.6% through 2023.  Within this wholesale shift of lamp types, however, is another trend with far-reaching implications.

More and more  LED light bulbs are being sold with integrated wireless connectivity.  Instead of being controlled with simple switches, or even physical dimmers, these bulbs connect to the Internet, often through the homeowner’s Wi-Fi network, and can then be controlled through applications on a computer or smartphone.

This capability may seem extravagant , but the trend is picking up steam surprisingly quickly.  One of the first entrants to the category of wireless light bulbs was the Philips Hue, launched in October 2012.  Since then, nearly all of the large lighting companies have launched products in this category, including OSRAM, GE, Samsung, and LG.  In total, 18 different wireless light bulb products are available from 16 different manufacturers, including Greenwave Systems, Leedarson, LIFX Labs, Belkin, Fujikom, Whirlpool, and others.

Mood Lighting

These products come with a large range of features.  All are capable of dimming, while only some are able to change color (Philips, LIFX Labs, OSRAM, Tabu, Fujikom, and Environmental Lights).  Through various software applications, the lighting can be modified based on the time of day, weather conditions, or any other user preferences.  Lighting can also be tied into other home systems, such as the Philips Hue’s ability to connect with the Nest Protect smoke detector and flash red lights when either smoke or carbon monoxide are detected.  The Hue even allows lighting to be modified based on programmed sequences as an audio book is being read to provide a fully immersive scene for the listener.

Wireless bulbs come with a significant price premium over their non-connected counterparts.  While outlets such as The Home Depot have begun selling standard A-type LED bulbs for under $10, wireless bulbs are priced between $30 and $60 apiece.  As this premium comes down, and as more users become interested in the range of possibilities made available through connected lighting, adoption is expected to increase rapidly.

 

What Robots Can Teach Us about Energy Management

— October 14, 2014

The Tennessee Valley Authority (TVA) has learned some valuable lessons from a study involving the use of robotics to simulate human behavior.  The results show that dramatic improvements in efficiency can be obtained with a combination of new technology and a focus on energy efficient construction techniques.

The 5-year Campbell Creek project involved three similar Knoxville, Tennessee-area homes.  Each has the same floor plan, with two stories, and measures between 2,400 and 2,500 square feet.  Here is how they differ:

  • Builder House: This was the control home, or benchmark, built to represent a typical residence constructed for the Tennessee Valley and built to local building codes.
  • Retrofit House: This house was essentially the Builder House, but retrofitted with energy efficiency technologies, such as more energy efficient windows, ENERGY STAR appliances, compact fluorescent lights, sealed attic with foam insulation, and high efficiency heat pumps.
  • High Performance House: This house was built using the latest available construction technologies aimed at energy efficiency, as well as PV panels and solar water heating to help make it a near zero energy house.

The TVA then outfitted each home with robotic devices to mimic human behavior.  For example, a robotic arm on the refrigerator in each home would open the door simultaneously at 3:00 in the afternoon, when kids typically arrive home from school.  Each home had the same automated systems to turn on lights, televisions, appliances, and showers.  The homes also had a device that replicates how a person’s body heat affects the temperature and humidity of a room.  In addition, each home had hundreds of sensors installed to monitor energy consumption of all the subsystems.

Results and Lessons

The Builder House had a utility bill of about $1,600 a year, the Retrofit about $1,000, and the High Performance was slightly more than $400, according to project managers.  Based on the Home Energy Rating System (HERS) Index, the homes scored as follows: Builder House, 101; Retrofit House, 68; and High Performance House, 34 (a lower score is better).

The TVA project was conducted with partners Oak Ridge National Laboratory (ORNL) and Electric Power Research Institute (EPRI).  Near real-time data from the project as well as archived results are available at the EPRI web site.

These are not exactly startling results, but this intriguing study has valuable lessons for all stakeholders – utilities, homebuilders, and homeowners.  One main lesson is that doing basic things like tightening a home’s envelope with enhanced insulation and energy efficient windows will have lasting benefits.  Also, investing in the most efficient HVAC and water heating systems one can afford will pay off in energy savings.  The manager of the project, David Dinse, who has just retired, told me the project has generated quite useful data – so why aren’t more builders and utilities taking these lessons and running with them?

 

New Study of EcoFactor Home Energy Management Offering Sparks Responses

— September 16, 2014

Cloud-based home energy management (HEM) startup EcoFactor is touting data from a new independent study showing that its system delivers significant energy savings for residential customers enrolled in Nevada utility NV Energy’s mPowered program.  The analysis, conducted by ADM, found that in the summer of 2013, homes with EcoFactor-connected thermostats reduced electricity consumption by an average of 94.68 kWh per month, or 5.5%.

The study also showed that EcoFactor reduced peak load by 2.7 kW per thermostat, more than twice the load shed claimed by Google’s Nest Labs (1.18 kW per device) and 90 times the load shed Opower estimates it can achieve through its behavioral approach (0.044 kW).

It’s important to note that NV Energy’s mPowered program, which at that time had 14,500 participating customers, was (and still is) all EcoFactor – with no other competitors involved.  So there is no head-to-head comparison with Nest devices, for instance, nor with Opower’s approach.

The closest comparison between EcoFactor and a competitor involved a Carrier two-way communicating thermostat for residential customers.  In terms of per-device hourly reduction, EcoFactor’s thermostats came out on top, with a peak reduction of 2.37 kW.  Carrier devices followed closely at 2.33 kW.

EcoFactor’s approach is not limited to demand response (DR) events and electricity.  By persistently working in the background (similar to Nest), it can also help a homeowner reduce natural gas consumption via the thermostat, as the study points out.  The study’s authors calculated the expected natural gas savings from EcoFactor’s platform during months in Las Vegas when space heating would occur and found that they would amount to 18 therms per year.  When combined with the cooling reductions, about 635 kWh, the expected annual savings for an EcoFactor home was about $98.

The Competition Reacts

In a blog post, Yoky Matsuoka, Nest Labs’ vice president of technology, responded, “If we take a look at the hottest days in Austin, Texas (where we did a study of Nest homes last year) and compare them to similarly hot days for EcoFactor customers in Nevada, Nest customers and EcoFactor customers both reduced their peak energy use by about 1.3 kW of energy.”  This competition is healthy for the HEM sector.

It’s also helpful to contrast the EcoFactor-mPowered results with what Oklahoma Gas and Electric (OG&E) has reported from a similar smart thermostat-DR program called SmartHours.  Using Energate thermostats and the Silver Spring Networks software platform, the average participating OG&E customer saved about $191, or approximately 15%, off an annual bill in 2012.  That program has not undergone an independent study like NV Energy’s, but it shows that results can vary.

What this independent study of NV Energy’s programs shows is the need for common standards on which to evaluate HEM programs and devices, something we’ve pointed out in Navigant Research’s reports, Home Energy Management and Smart Thermostats.  Standardizing the measurement process across more utilities will help eliminate some of the confusion around the data and give key stakeholders – utilities, HEM vendors, and residential customers – more insight into what really lowers energy consumption and costs.

Lauren Callaway co-authored this blog.

 

Utility Customers Respond to Variable Pricing

— September 7, 2014

On July 23, Baltimore Gas and Electric (BGE) customers earned more than $2.5 million by reducing their electricity usage during peak summer heat hours.  Over 640,000 residences voluntarily participated – nearly an 80% participation rate among those who were notified – amounting to an average bill credit of $6.80, enough to buy an ice cream cone while turning down the air conditioning a few degrees.

BGE is the first utility in the country to put all of its customers with smart meters on a default Peak Time Rebate program.

It works like this: BGE customers with a smart meter can participate in the BGE Smart Energy Rewards program by voluntarily reducing their electricity usage to earn a bill credit of $1.25/kWh saved from 1 p.m. to 7 p.m. on designated energy savings days.  Eligible customers will be notified, usually the evening before, by an automated phone call, e-mail, or text message.  BGE anticipates that there will be 5 to 10 energy savings days in a summer season.

Smarter Grids, Smarter Customers

BGE has had a traditional direct load control (DLC) residential DR program for many years, and it has been successful within its own parameters.  However, the company has been installing advanced metering infrastructure (AMI), as covered in Navigant Research’s Smart Meters report, over the last few years, and with that network comes new capabilities (and regulatory requirements to meet cost-benefit thresholds).  AMI provides the utility and potentially customers with near-real-time interval meter data, so the utility can send time-based price signals and get almost immediate feedback on customer performance.  Couple these abilities with new end-user device and thermostat technologies that enable fast response and remote control by the customer, and you have more customer-centric, flexible demand response (DR) programs than were possible before; this can increase customer penetration rates dramatically.

Right on Time

Other innovative companies are trying different variations of programs and pricing offerings.  The Sacramento Municipal Utility District (SMUD) is looking to become the first utility to have a default time-of-use (TOU) rate after running a successful pilot that showed that customers preferred TOU structures to their standard flat rate.  The guiding principles of Oklahoma Gas and Electric (OG&E) for DR include voluntary participation for customers and no DLC by the utility, relying completely on customer empowerment.  OG&E believes that pairing dynamic pricing with technological devices will achieve these goals.  The province of Ontario, Canada has instituted default TOU pricing for customers with smart meters since 2005, the only area in North America to do so.  A traditional DLC program already existed in the province, and now the plan is to combine the control ability of the DLC with TOU pricing to help customers respond to price variations.  Massachusetts is set to become the first U.S. state to mandate default critical peak pricing (CPP) based on a recent order by the Department of Public Utilities.

All of these developments and other innovative programs are covered in Navigant Research’s new report, Residential Demand Response.  The report discusses industry trends around the world and provides 10-year forecasts of sites, capacity, and revenue, including breakouts between DLC and dynamic pricing.  Over time, all these different pilot projects will blossom into full-blown programs and expand into other jurisdictions, creating a truly responsive demand side of the energy equation.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Home Energy Management","path":"\/tag\/home-energy-management","date":"10\/24\/2014"}