Navigant Research Blog

The Link between Home Ownership and Energy Efficiency

— April 16, 2014

The world’s population, and how that population is housed, is undergoing a rapid transformation. Urbanization and its impact on sustainability have been well-studied in recent years. Indeed, 70% of the world’s population may live in cities by the second half of the century, but will they rent or own, and how will that affect energy efficiency?

Home ownership rates, like urbanization, are undergoing broad changes. Unlike urbanization, the direction and magnitude of the changes in home ownership vary regionally. Nonetheless, the rate of home ownership is on a wild ride. In the United States, home ownership is at an 18-year low. Meanwhile, Germany, famed for its renting culture, is facing a property rush.

The ownership of a home should influence investment decisions in energy efficiency. Renters have little incentive to invest in lowering utility bills if the paypack period is longer than the expected occupancy. Why would a renter install an LED light bulb that lasts for 20 years if he or she plans to move out in 2 years?  The value proposition of energy efficient investments is similarly poor for landlords.  For many improvements, such as better insulation and more efficient HVAC, the benefits are largely felt by tenants, but the cost is incurred by landlords.  In fact, data from the Energy Information Administration indicates that renters consume on average 33% more energy per square foot than homeowners do.  Home ownership has a profound impact on energy efficiency.

Household Energy Consumption, United States: 2009

Household Energy Consumption, United States: 2009

(Source: U.S. Department of Energy)

However, what about Germany? It is a country with a historically low ownership rate and a strong culture of renting, but it has been a beacon of innovation for home energy efficiency.  The first Passivhaus and the Passivhaus Institut are located in Germany, as is a house that generates enough electricity to meet its own needs and power a car.  Of course, ownership is only one factor.  Government regulation has played a large role in establishing Germany’s market for energy efficient homes.  In contrast, U.S. innovation in home energy efficiency is often driven by what homeowners want rather than what regulations dictate.  The Nest Learning Thermostat, for instance, was developed by Tony Fadell because he realized there was value in expanding the limited features of conventional thermostats.  Though, as fewer Americans and more Germans buy houses, it will be interesting to see how dynamics in innovation shift. After all, property ownership does change your world view.

 

Solar Market for Base of Pyramid Not So Pico

— April 14, 2014

In an upcoming report on pico solar lighting products (<10W) and solar home systems (<200W) sold primarily to rural communities in Africa and Asia, I cover the unit sales, revenue, and capacity of these small solar photovoltaic systems globally.  One of the most important trends covered in the report is that pico solar has transitioned from a humanitarian aspiration to big business – more than $100 million in 2014.  Corporate involvement in rural electrification has traditionally come in the form of corporate social responsibility initiatives, but real money is now flowing to solar companies serving the base of the pyramid market.  The success of a number of off-grid solar lighting companies and social enterprises has attracted interest from major corporations such as Panasonic, Schneider Electric, and Philips, as well as funding from investors.  Some of the more notable investments include:

  • In early 2014, d.light raised $11 million in Series C funding from DFJ, Omidyar Network, Nexus India Capital, Gray Ghost Ventures, Acumen Fund, and Garage Technology Ventures.  The company is one of the leading pico solar manufacturers, and has now raised $40 million and sold an estimated 6 million pico solar systems reaching 30 million people.
  • In early 2014, Persistent Energy Partners acquired Impact Energies, a pay-as-you-go, off-grid solar service provider working in West Africa that has reached 30,000 customers since 2011.  The renamed company, Persistent Energy Ghana, installs village solar microgrids and solar home systems.
  • In late 2013, Khosla Impact invested $1.8 million in a Series A round with BBOXX, a U.K.-based company that sells portable solar kits ranging from 7W to 185W and plug-and-play solar systems that range between 2 kW and 4 kW.  The company also provides a mobile pay-as-you-go service enabled by remote battery monitoring, which was the primary interest of Khosla.
  • In 2012, Greenlight Planet, one of the leading designers and distributors of solar light-emitting diode home lights, raised $4 million from Bamboo Finance and Dr. P.K. Sinha, co-founder of ZS Associates.  The investment followed previous financing by Dr. Sinha.  Greenlight Planet has sold more than 1.8 million solar lamps since the company was founded in 2008.
  • In 2012, Barefoot Power, one of the largest pico solar manufacturers, raised $5.3 million from three social investment funds (d.o.b. Foundation, ennovent, and Insitor Fund), existing shareholders (The Grace Foundation and Oikocredit Ecumenical Development Cooperative), and a number of private angel investors.

The full report will be released in the next few weeks.  It will discuss industry market drivers and challenges, and includes more than 20 company profiles and country-specific forecasts from 2014 to 2024.

 

Nest Faces Lawsuit over Alleged Thermostat Flaws

— March 31, 2014

Nest Labs faces a new lawsuit brought by a dissatisfied Maryland customer who claims the Nest thermostat that he purchased is defective since the faceplate heats up and inaccurately measures a room’s actual temperature.  The suit, which seeks class action status, asks for more than $5 million on behalf of other Nest buyers.

The lawsuit was filed by Justin Darisse of Gaithersburg, Maryland and alleges Nest “increases costs because Nest heats up, which causes Nest’s temperature reading to be from 2 to 10 degrees higher than the actual ambient temperature in the surrounding room.”  The suit also alleges the company violates warranty and consumer protection laws.  Darisse also noted in his suit that he would have kept his $30 Honeywell thermostat had he known the Nest device, which retails for $250, would not help lower his energy bill.

Not the First Suit

Nest Labs, which is now owned by Google after a January acquisition, has declined to comment on the suit.  Nest is no stranger to lawsuits, though. There is a pending suit with Honeywell over alleged patent infringement and another patent infringement suit brought by BRK, maker of First Alert smoke alarms, related to Nest’s introduction of its Protect smoke alarm.

While the merits of this latest lawsuit will be debated for some time, the truth is that Nest and parent Google will need to fight the negative perceptions this suit is likely to generate, especially if it does attain class action status.

Mixed Bag

There is no question a Nest thermostat provides some very cool features: it has Wi-Fi to connect with a mobile device, and it learns the patterns of people in a home and can make adjustments automatically.  But my own experience has been mixed.  I installed one in my home last year to control my natural gas furnace, and so far, I have used the same number of Btus over the past 7 months as in the same months the year before.  And the installation was not easy, requiring me to hire an installer to come in after I spent many hours on my own and with a Nest tech via phone to no avail.  Also, two friends have had issues with the Nest thermostat they purchased.  One said his energy bill increased after installing his Nest thermostat.  The other also had trouble installing it by himself and later got so fed up after a software update went bad that he had it replaced with a more standard thermostat.

Now it looks like Nest could have some explaining to do in court. More to come on this, I’m sure.  And for more on the market for smart devices for energy management in the home, please sign up for Navigant Research’s webinar, “Home Energy Management,” on Tuesday, April 1 at 2:00 p.m. EDT.  To register, click here.

 

Smart Building Apps Seek Relevance

— March 20, 2014

In a world where software applications are replacing bank tellersconcierges, and even opticians, what’s the impact on the role of building engineers?  As described in Navigant Research’s Commercial Building Automation Systems report, the convergence of information technology and building control networks is yielding vast amounts of data.  Moreover, the wider adoption of open standards and the decentralization of building networks make this data widely available.  Against this backdrop, the appification of building management seems inevitable.

Still, the universe of building management applications appears to be in its infancy.  A quick search of the iTunes App Store revealed several available choices.  Apps are available from developers as large as Siemens and as small as Lorenzo Manera (I don’t know who he is, either).  The low barrier to entry in app development means that new entrants are just as capable of bringing an app to market as veteran industry players.

Most of these apps appear to turn a mobile device into another building-level control panel, providing functionalities such as monitoring and controlling heating, ventilation, and air conditioning (HVAC) and lighting or providing some level of energy management.  With the proliferation of open protocols, these types of apps have become easy to develop.  However, they all seem to be equally unsuccessful; none of the apps identified have received enough overall ratings for an average rating to be displayed.

Worthy or Worthless?

Smartphones and tablets provide a slew of sensors and far greater mobility than laptops.  Successful apps take advantage of these features, whether it’s the ability to play games anywhere or to use the embedded camera to snap a quick Instagram selfie.  Residential building automation provides several compelling ways to leverage the properties of mobile devices: occupancy can be set using geolocation, outside air temperatures can be provided through the Internet, and devices can remotely monitor and control lighting, HVAC, and security.  Moreover, an app can obviate the need for a system console.

Apps for commercial buildings, however, are a different story.  Since they’re built on top of an existing building management system (BMS), they don’t replace any equipment.  They don’t provide any more functionality than the underlying system.  The sensors on the device do not provide any useful input.  Some building management apps may aid in commissioning, but the biggest feature appears to be providing another way to monitor the BMS.  The Facility Prime app from Siemens, for example, is described on iTunes as “an ideal interface for non-facilities employees that may need access to live system data.”  Until building management apps can provide more functionality for commercial buildings, they will remain a cool toy for home automation.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Energy Management, Energy Storage, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Grid Practice, Smart Transportation Practice, Utility Innovations

By Author


{"userID":"","pageName":"Home Energy Management","path":"\/tag\/home-energy-management","date":"4\/18\/2014"}