Navigant Research Blog

Li-Fi Turns Light into a Data Stream

— July 13, 2014

Since Harald Haas demonstrated the ability of light-emitting diode (LED) lights to transmit data during a TED Talk in 2011, the promise of Li-Fi (short for light fidelity) has received a lot of attention.  As researchers develop faster and faster communication speeds, the application of the technology to the building space appears both realistic and attractive.  Commercially, General Electric (GE) has demonstrated the viability of the technology through its launch of LED-based communication for retail environments.  Li-Fi could be cheaper and consume less energy than existing wireless communication technologies that rely on radio frequencies (RF).  Smart buildings, which require a dense and flexible control network, present an interesting application for a Li-Fi deployment, particularly with the increased adoption of LED lighting.

Non-Interfering

Li-Fi seems to be a compelling alternative to the RF technologies that are currently in use today.  First, the RF available to building automation is crowded.  Moreover, as the Internet of Things becomes more pervasive, more and more communication nodes will further saturate the environment.  RF travels through walls.  So, a node in an adjacent room will be competing for detection.  But Li-Fi is impervious to this problem.  Since the range of any individual Li-Fi node extends only to the nearest wall, the communication in one room will never interfere with other communication in a different room.  In other words, the inherent limitations on Li-Fi range are an ideal solution for saturated networks.  Moreover, more than just crowding, interference from microwaves and other devices can be a problem, particularly in medical environments.  Li-Fi is immune to RF interference.

Security is another area of concern for wireless communication.  It’s relatively easy to hack a Wi-Fi network.  Li-Fi, on the other hand, has a shorter range and requires line-of-sight.  As a result, it is inherently more secure.  You have to be within the range of the transmitter and receiver, shifting the threat of IT security to more manageable physical security.

The Bad News

The technology faces some serious technical challenges before widespread adoption, though.  In addition to enhancing security, the line-of-sight requirement also presents challenges.  Though Li-Fi is immune to RF interference, it is susceptible to interference from a more ubiquitous source: the sun.  Receivers placed close to windows could be rendered ineffective.  Additionally, lighting in buildings is typically designed to be unidirectional, from the light source to the space to be illuminated.  But communication networks must be bidirectional to both send and receive data.   In order to create a Li-Fi network, lights would need to be installed to point at each other, which is at odds with their intended functionality.

Despite these drawbacks, Li-Fi could overcome several of the barriers facing wireless.  Though most of the current buzz focuses on visible light communication, using infrared light could solve many of the hurdles.  Windows can be designed to block infrared light but allow visible light to pass, eliminating problems of solar interference.  Infrared also has greater potential throughput of up to 5 to 10 gigabits per second.  Overall, the challenges facing Li-Fi are no greater that the challenges facing RF.  The technology appears to be several years away from successful deployment in building automation.  But it’s coming.

 

LEDs Lead Smart City Networks

— July 3, 2014

The path to more systematic and dynamic control of street lighting is being blazed by the adoption of light-emitting diode (LED) technology.  The continuing fall in the price of LED street lights has made them attractive to city managers around the world, particularly for new installations.  In our new report, Smart Street Lighting, Navigant Research estimates that 53% of street light luminaire sales in 2014 will be LED, and that percentage will grow to 94% by 2023.

This rapid transition to LED street lights is occurring as new, networked control systems become widely available.  These systems can bring added energy savings as well as additional value through greater control and reduced maintenance costs (see here, here, and here for examples).  Given the comparative ease and reduced cost of installing a control node while replacing a luminaire, the LED transition is proving to be a boon in the adoption of networked street light systems.  Navigant Research forecasts that revenue from the control equipment for such systems will grow from $197 million in 2014 to $477 million by 2023.

Illuminated Backbone

With the installation of a network that can communicate with street lights comes the opportunity to integrate those controls with multiple other intelligent systems: traffic light controls, security cameras, electric vehicle charging stations, environmental sensors, and digital signage.  The availability of both power and communications on street light poles throughout a city provides a ready-made backbone for many of those other services.  The same communications infrastructure can often be expanded for additional applications, and once the value of one such system is proven, city managers become far more likely to seek new applications for the technology.

In order to fulfill the potential of integration between multiple smart city systems, however, smart street lighting systems have to become more adaptable and more open.  In short, they need to look more like platforms than proprietary, closed systems.

Standards Emerge

The adoption of standards at multiple levels is crucial if smart street lighting networks are to serve as the platform for other smart city projects.  Standards adoption will open up the market and provide cities with more choice and greater confidence about the future value of their investment.

Standards-based software and communications protocols enable greater interoperability between systems, but there is also a role for more standards at the hardware level.   For this reason, the publication of a new standard by the National Electrical Manufacturers Association (NEMA) earlier this year is an important development.  Standard 136.41 defines a dimming controller and socket for street light luminaires.  The implication of the new standard is that, as long as a city purchases compliant street lights, it will be able to add control features, such as dimming and wireless communications, at a later date simply by purchasing any vendor’s compliant controller and plugging it into the top of their lights.  I discussed the new standard in more detail in a previous blog.

For a detailed examination of the benefits of smart street lighting for smart cities, the challenges still to be addressed, and Navigant Research’s forecasts for the growth of the market, please join us for the upcoming free webinar, Smart Street Lighting for Smart Cities, on July 8 at 2 p.m. EDT.  Click here to register.

 

Gasification Projects Drive Smart Waste Evolution

— June 27, 2014

As the waste industry slowly evolves toward more integrated solutions for municipal solid waste (MSW) management, increasing volumes of trash are now being handled by so-called smart technologies.  Waste-to-fuels (W2F) – a subsegment within the energy recovery market that converts MSW into finished fuels, like ethanol and jet fuel – has become especially active, with advanced gasification technologies reaching important commercial milestones.

Enerkem, a Canadian company that recently gained first-mover status with the opening of a 10 million gallon per year (MGY) waste-to-methanol plant in Edmonton last month, is the first pure-play W2F project in development to reach the commissioning stage.  The company plans to add an advanced ethanol module later this year.  In April, British Airways and U.S.-based Solena Fuels (which are jointly developing GreenSky London, a 19 MGY facility converting landfill waste into jet fuel, bionaptha, and renewable energy) announced the selection of a site to commence commercial development and commissioning by 2017.

Faced with high capital costs, both projects depend on the low cost and widespread availability of waste as a feedstock to drive initial viability and future expansion.

Landfilling

According to World Bank estimates, nearly 1.5 billion tons of MSW is generated globally each year.  This total is expanding rapidly due to urbanization and rising levels of affluence in developing economies across Asia Pacific and Africa.

While 16% of MSW generated globally is never collected in the first place, and 27% is diverted for either material or energy recovery, more than 50% is still dumped in landfills, according to Navigant Research estimates.  Although there is plenty of trash to go around for higher value applications like W2F, market development depends on tightening regulations driving landfill diversion, since landfilling is typically the lowest-cost solution in areas where waste is actively managed.

In Western Europe, and to a lesser extent, North America, where waste diversion is gaining the most traction, momentum appears to be increasingly on the side of emerging companies like Enerkem and Solena Fuels commercializing breakthrough energy recovery conversion technologies.

Smart Waste

As forecast in Navigant Research’s report, Smart Waste, annual revenue in the smart MSW technology market – of which, energy recovery is a key subsegment – is expected to more than double from $2.3 billion in 2014 to $6.4 billion in 2023.  Annual revenue from smart MSW technologies is expected to surpass conventional technologies by 2019.

Annual MSW Management Revenue by Technology Type, World Markets: 2014-2023

 

(Source: Navigant Research)

While Waste Management in North America remains an active investor in Enerkem and other early-stage companies commercializing smart MSW technologies and solutions, traditional waste haulers face a revenue decline similar to that faced by traditional electric utilities.  As more MSW is targeted as a strategic feedstock, there is less trash for waste haulers to manage, resulting in less and less revenue.

Despite this evolution, companies like Enerkem and Solena Fuels still have a long road ahead.  These companies must compete for municipal contracts – in most cases, with traditional waste haulers – often pitting the high capital cost of an advanced energy conversion facility against landfilling on one hand and relatively inexpensive fossil fuel refineries on the other.

Enerkem’s Edmonton facility is estimated to cost $7.50 per gallon of production capacity to build.  GreenSky London, which incorporates the Fischer-Tropsch gasification process to convert MSW to synthetic gas (syngas), is expected to cost more than $14.00 per gallon of production capacity.  While the initial capital cost of such facilities is expected to decline over time, both platforms will depend on multiple revenue streams to be commercially viable.

 

Workspace of the Future: Less Space, More Workers

— June 9, 2014

Since the days of George Jetson’s sprawling desk at Spacely Space Sprockets, the concept of the “Office of the Future” has been the subject of much speculation.

Today, offices have shifted from the staid cubicle and corner office model to other dynamic layouts, with a myriad of names and flavors.  Open floor plans, where there are no cubicle-type walls, create a bullpen-like environment, with some senior staff located on the perimeter (see Dunder Mifflin’s Scranton Branch layout).  Hoteling is a process of “checking out” a desk on a first-come, first-served basis (though some spaces can be reserved a day in advance); employees’ personal objects are wheeled to the desk for the day’s activities.  Flex space, project-based configuration, and dynamic space all refer to space that can be reconfigured to suit collaboration and changing needs of employees on an hour-by-hour basis.  The new GSK building in the Philadelphia Navy Yard features “neighborhoods” where even the CEO can be found out in the open.

Closer In, Please

The driving force behind these new layouts is the urge to make workers more satisfied and efficient.  Other shifts, like the rise of telecommuting and wireless technology deployment, enable laptops to rise as the tool of the day.  Also behind the shift to new space configuration is the desire for companies to rent less space, thereby reducing operating costs.   All of these changes are driving some cascading impacts in the building industry.

First is the need for retrofitting space.  And with office retrofits come upgrades in lighting (and networked lighting), heating, ventilation, and air conditioning (HVAC), and other space improvements.  Secondly, these changes have led to an overall increased density of people in offices, even with the new layouts.   This trend has been reported in Arizona and across the United States.  In 2013, Gensler reported that average square feet per person dropped from 225 to 176 from 2010 to 2012, and could drop to as low as 100 square feet per person by 2017.  A 2013 report by the British Council of Offices cites that in some buildings, worker density has risen from 12.5 square meters per workspace in 2008 to 9.6 per workspace in 2009, though the trend may be leveling off.

Is It Hot in Here?

One surprise leader in dynamic space is the United States’ real estate manager, the General Services Administration (GSA).  The GSA has recommended freezing the size of the U.S. government’s real estate footprint and has touted its newly renovated headquarters in Washington, D.C., as supporting more than twice the number of employees than it did pre-renovation.

What do denser spaces mean?  While the cost per square foot is an easy win for tenants, there are other impacts that may be challenging for building energy mangers.  With denser space comes the need for differentiated lighting and air conditioning.  More people and laptops per square foot can trigger more cooling.  While many buildings already operate with HVAC systems well over capacity, the new changes in density can lead to challenges in tuning a building to its needs.   All of these changes will make the jobs of energy and facility managers more challenging.  That said, more advanced and portable tools are now available in the market.   While it is evident the office of the future will be no single layout, the needs and comfort of tenants will always be dynamic, making intelligent building management ever more important.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Energy Storage, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Utility Innovations

By Author


{"userID":"","pageName":"Industrial Innovations","path":"\/tag\/industrial-innovations","date":"7\/23\/2014"}