Navigant Research Blog

Building Systems Learn to Communicate

— September 25, 2014

In the Hype Cycle, the Internet of Things (IoT) has reached the peak of inflated expectations and may even be over-hyped.  Many observers have commented on its adoption in home automation, high-voltage transmission systems, and smart cities.  The state of IoT in commercial building automation is murkier.

In a recent survey of building professionals administered by CoR advisors, 41% of the respondents reported not being familiar with the term “Internet of Things.”  Hype about IoT in building automation, it seems, is lagging, but its promise may be just as enticing in buildings as in other applications.  Indeed, more respondents indicated that they think the IoT will have an effect on how their building is run over the next 2 to 3 years than those who indicated they were familiar with it.

At a certain level, machine-to-machine communications, the foundation of the IoT, have been present in building automation systems (BASs) for decades.  In heating, ventilation, and air conditioning (HVAC), a temperature sensor can communicate with a variable air volume box to modulate the supply of conditioned air.  In turn, this variable air volume box communicates with an air handling unit that supplies the proper amount of air.  In most buildings, this happens on the HVAC control network.  The promise of IoT is for this to happen not on a network, but on the network, for any machine to communicate with other machines.

Open Sesame

This integration is happening.  Daintree Networks, for instance, offers seamless HVAC control, lighting control, and power metering.  Similarly, Automated Logic has introduced solutions to integrate different control silos.  One of the most interesting integrated deployments is the Government Services Agency headquarters in Washington, D.C.  The building management system knows when an occupant badges in, where that person is going, and what temperature they want the space they’ll occupy.  The next step is getting building automation to interact with a mobile phone or an automobile.

Unlocking the promise of IoT requires multiple companies and multiple systems to interact with each other.  It requires disparate BASs to not only communicate with other BASs, but to also communicate with anything.  Thankfully, the industry is moving in that direction.  Over the past 20 years, open protocols, such as BACnet, LonTalk, DALI, and Modbus, have gained widespread acceptance.  Unfortunately, they don’t communicate with each other very well.

Another survey, this one by Echelon (which recently announced an increased focus on the IoT), outlined the path to IoT in buildings.  Seventy percent of respondents reported that they plan to integrate disparate BASs onto a common platform.  Nearly a third of respondents indicated a plan to do so in the next 12 to 18 months.  Regardless of whether the IoT is over-hyped or unfamiliar, it’s coming to commercial building automation systems soon.

 

Internet of Things Reaches the Smart Home

— June 9, 2014

In the last several years, a lot of online buzz has promoted the Internet of Things (IoT), much of it centered on connecting more devices in the home, with a particular emphasis on enhancing energy efficiency.

And nothing gets the blogosphere more amped up than an announcement from Apple, which unveiled its HomeKit home automation software framework during its latest annual Apple Worldwide Developers Conference.   HomeKit is the underlying technology that will enable users to connect in-home devices like light bulbs, appliances, and thermostats with iPhones and iPads.

Energy Aware

Apple aside, there are other significant developments surrounding the IoT and smarter homes.  For instance, the Consumer Electronics Association recently approved a new standard (CEA-2047/CE-Energy Usage Information) that would give users a more detailed picture of device-specific energy consumption.  Though not mandatory for CE device makers, the new standard sets up a framework for manufacturers to provide energy consumption data that could be fed to an energy management system or to an application and present it to consumers on TVs, PCs, or mobile devices.  In essence, the standard enables devices to be energy self-aware and share that energy data with other devices.  The new standard is also compatible with the Green Button initiative, an industry-led move to provide utility customers easier access to their energy consumption data.

Not all of the action in this field is in the United States.  In Europe, energy provider Vattenfall has partnered with Deutsche Telekom (DT) to offer a new smart home software platform to its customers for controlling their lighting, heating, and appliances from PCs, smartphones, or tablet devices.  The platform, developed by German startup GreenPocket, is already used as the basis for a home automation and security system called Qivicon that DT sells to its customers.  DT, which controls mobile carrier T-Mobile USA, has plans to bring the Qivicon product to the United States and the United Kingdom.

Still a Few Glitches in the System

Clearly, the IoT has begun to move beyond early concept to actual in-home devices and systems that provide automation and energy efficiency.  Machine-to-machine activity working in the background is a reality.  My own experience with connected devices, though, has been somewhat underwhelming.  I have a Nest thermostat, and I’ve installed a few Philips Hue LED light bulbs that can be controlled from my smartphone.  While the Hue bulbs are cool and all, they aren’t all that great.  The original software was awful, and the third-party app I bought isn’t much better.  The thermostat works fine, but the energy savings have been elusive, as I’ve previously mentioned.   Plus there are downsides to a more connected home, as The New York Times’ Nick Bilton pointed out in his piece on the dark side of IoT.  And even simple problems expose the weaknesses in the system; my wireless router was replaced recently, and for a time the thermostat was offline until I set up the new WPA2 passcode.  Not a big problem in the warmer days of spring, but what if there is an outage during a cold snap or while we’re away on vacation?

So, while the geek inside me longs to embrace this move to the IoT and the greater efficiency, the reality is we are only at the quarter-mile mark into a marathon, and there will be more bumps along this road.

 

Does a Devilish Startup Have an Answer for the Internet of Things?

— June 5, 2012

A new startup aims to advance the idea of the “Internet of Things” in a way that could have a significant impact on the energy business.  Electric Imp was formed in 2011 by former iPhone hardware engineering manager Hugo Fiennes, former Gmail designer Kevin Fox, and veteran firmware engineer Peter Hartley.

Their idea is that products from dishwashers to doorbells to blenders will include slots for “Imp cards,” which will enable users to wirelessly monitor, control, and get alerts from everyday devices.  Electric Imp acts as the web interface in the process, handling cloud services in the background.

The Imp card has an embedded processor and communicates over standard Wi-Fi protocols, including encryption.  The card itself has a familiar SD card form factor.  It’s similar to an Eye-Fi card used in digital cameras for automatically uploading photos to computers, tablets, or phones.  But in this case, the device is controlled via a cloud service that sends alerts when energy rates are cheapest for running a washer, for example, or kicks on lights when certain conditions are met, among other possibilities.

The Imp cloud service acts as the central hub for each device.  In order to set up a Wi-Fi connection, the company uses patent-pending technology called Blinkup to enter SSID and password information on iOS and Android smartphones; this data is beamed wirelessly to an Imp’s light sensor by quickly pulsing the handset’s screen on and off.

The company, based in Los Altos, California, is in talks with equipment makers to get them to build the slots into new products.  The Imp cards themselves will retail for $25 each.  The company plans to release a developer preview bundle in June, with the first compatible devices expected later this year.

Though Electric Imp is an early startup, with little proven in the way of a business, it has a strong management team plus $7.9 million in Series A money from Redpoint Ventures and Lowercase Capital.  If Fiennes and his team can make sense of connecting devices and the Internet beyond what we see today, I wouldn’t bet against them.  The big challenge will be to get manufacturers on board quickly enough and at a scale to make a difference.  And that can be quite a demon to overcome.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Internet of Things","path":"\/tag\/internet-of-things","date":"10\/21\/2014"}