Navigant Research Blog

Community Resilience and the Future of Small Grids

— February 19, 2015

The spate of extreme weather events in recent years has stirred up interest in the concept of “community resilience”—i.e., the creation of more reliable and resilient power grids. The debate rages on how best to provide such services. In a forthcoming report, as well as a webinar on March 17, Navigant Research will analyze and forecast the size of the market for one of the most promising pathways forward: community resilience microgrids (CRMs).

Ground Up

The drive for increased grid resilience comes from community stakeholders, many of whom also value energy independence, sustainability, and local economic development goals. In New York, crowds as large as 100 to 150 people have shown up at recent community meetings, often braving snowstorms, to learn how they can become involved in developing greater resilience at the community level.

This is the segment of microgrids where the most innovation will occur in terms of business models and regulatory reforms. Why? Many of these systems challenge utility franchise rules that prohibit transfers of power services over public rights-of-ways. It may make inherent sense, in terms of both emergency responses and sustainable urban design schemes, to bundle different kinds of customers served by different utility rate classes into a single microgrid. Such novel aggregations, however, bump up against long-standing utility prohibitions on sharing of power.

Smaller Is Better

In essence, each third-party CRM requires a negotiated settlement and special use exemptions (though there are a few interesting exceptions to this generalization).

It is these issues that are at the core of New York’s Reform the Energy Vision (REV) proceeding, perhaps the most comprehensive review of regulations pertaining to resiliency in the nation.

Some providers, such as the Clean Energy Group, argue that microgrids are the wrong focus, asserting that solar PV and energy storage nanogrids, such as those recently funded in Massachusetts, are a better solution. In the short term, this may be the wiser move, especially if they could be aggregated via a centralized control schemes into virtual power plants.

Such nanogrids represent modular building blocks for energy services that support applications like emergency power for commercial buildings, as described in Navigant Research’s report, Nanogrids. These grids typically serve a single building or a single load, generally below 100 kW in capacity—and thus do not violate regulations prohibiting the transfer or sharing of power across a public right-of-way.

Unquestionably, small grids (including both microgrids and nanogrids) represent a major element of the future of the power sector—an essential building block for the Energy Cloud that will encompass distributed generation resources and intelligent networks to meet energy demand, rather than centralized hub-and-spoke power grids. This spring, Navigant will offer a new collaborative study called The Future of Small Scale Microgrids and Nanogrids that will bring together utilities and their suppliers to better understand the risks and opportunities of this emerging market landscape. Click here for more information.

 

California Sets an Ambitious Energy Agenda

— January 9, 2015

Living in California, it’s easy to forget that the rest of the world doesn’t always see things in the same way.  Given the ambitious energy and climate change goals outlined in Governor Brown’s inaugural address on January 5, this divergence may only grow.

What exactly did the governor propose?  Here’s a snapshot summary of targets he set for the state by 2030:

  • Increase from one-third to one-half the portion of the state’s electricity derived from renewable sources
  • Reduce today’s petroleum use in cars and trucks by up to 50%
  • Double the efficiency of energy use in existing buildings while also making building heating fuels cleaner

The Center of Innovation

For investors in and developers of clean energy technology, Brown’s targets mean that California will continue to lead the United States in terms of R&D and commercialization of renewable energy, electric vehicles, and smart building automation products.

Perhaps the biggest surprise for skeptics of Left Coast policy aspirations is that data suggests California is likely to meet its AB 32 goal of reducing emissions of greenhouse gases to 431 million tons by 2020.  While the rest of the world continues to heat up and multilateral emissions reductions efforts by the United Nations in Lima, Peru late last year once again faltered, the only U.S. state to pass climate legislation with concrete objectives appears to be on its way to actually reaching those targets, despite a long list of hiccups and controversies.

Changing the Game

Will California meet Brown’s new goals?  That’s impossible to predict, but the real questions now lie in the details.  I, for one, was delighted to see the governor mention microgrids, since apparently he agrees that distributed renewables (such as rooftop solar PV) will be game changers.  The best way to transform such distributed energy resources from problems for the grid into solutions for climate change – including resilient communities that can keep the lights on during extreme weather events – is through the islanding capabilities of microgrids.

When I first started covering wind power in the ‘80s for the national trade press, I often dealt with skeptical East Coast editors.  “Do those wind turbines really work?” they would ask.  “Isn’t that just one of those California things?”  This was, of course, during Brown’s original tenure as governor, when he was dubbed Governor Moonbeam by the national press.  From a handful of wind farms jump-started by flawed but effective tax credits, a global industry was spawned that now generates an accumulated 321,559 MW of electrical capacity, or just under 3% of the world’s total electricity, according to Navigant Research’s most recent World Market Update report on the wind industry.  That’s up from less than 1% of California’s total electricity in 1985, 30 years ago.

Sometimes, the only way to leap forward is to go out on a limb on the policy front, and then see if entrepreneurs and capital markets are up to the task.  Only time will tell which is the wiser course – the prudent go-slow pace of national politics or the risk-taking adventure being drawn up in Sacramento.  I know where I’m placing my bets.

 

Alaska Leads the World in Microgrid Deployments

— December 17, 2014

Many utilities view microgrids as a threat, due to intentional islanding and/or the effects of reduced customer load on long-term revenue projections.  However, a small but growing number of utilities view the microgrids they own and operate – known as utility distribution microgrids (UDMs) – as the next logical extension of their efforts to deploy smart grid technology.  As I’ve noted earlier, the developed world can learn interesting lessons in this field from the developing world.

Navigant Research’s new report, Utility Distribution Microgrids, shows that the total UDM market represents over $2.4 billion of economic activity today, with the bulk of this investment flowing into projects located in the Asia Pacific region.  As noted in an earlier report, Microgrids, North America is the overall market leader.  Yet, when it comes to utilities, both Asia Pacific and Europe are ahead in near-term deployments and related implementation revenues.  All told, under the base scenario, Navigant Research expects the UDM market to reach $5.8 billion in annual revenue by 2023, growing at a compound annual rate (CAGR) of 10.2%.

However, there’s one important exception to this market generalization: Alaska.

Across the Tundra

“Over the last decade, Alaska has quietly emerged as a global leader in the development and operation of microgrids,” declared Gwen Holdmann, director of the Alaska Center for Energy and Power at the University of Alaska Fairbanks, in a recent interview.  A particular focus has been hybrid conventional-renewable-storage systems, networks that have “logged more than 2 million hours of continuous operating experience for these types of systems,” according to Holdmann.  The state boasts a portfolio of somewhere between 200 and 250 permanently islanded microgrids ranging from 30 kW – about the size of a city block – to large remote hydro systems over 100 MW in size.  These microgrids, many in operation for over 50 years, provide electric power service exclusively to isolated rural populations.  Total capacity exceeds 800 MW, the largest installed base of microgrids in the world today (though China may overtake Alaska by the end of next year).

Holdmann clearly takes pride in what Alaska has accomplished with these scattered, isolated hybrid power systems, which tap fuels as diverse as wind, solar, hydro, biomass, and tidal currents, along with diesel.  While other pundits may point to New York, California, or Hawaii as the centers of North American microgrid development, Alaska has been developing cutting-edge microgrids for quite some time.  “The State of Alaska alone has invested over $250 million in developing and integrating renewable energy projects to serve these microgrids, – far more per capita than any other state in the country,” Holdmann said.

Integration Experts

The advent of advanced technology deployment to these rural systems has forced Alaska utilities and developers to become expert in microgrid development and operation.  By far the greatest challenge was, and remains, the high-penetration integration of intermittent renewables, such as solar, wind, and hydrokinetic, with traditional diesel or natural gas fueled electric power generation.  Nevertheless, Alaskans have repeatedly achieved higher renewable penetration levels than nearly any other place in the world, under incredibly harsh conditions, including daylight hours that shrink to a couple hours a day in the winter and winds that can exceed 100 miles an hour – enough to literally tear apart many conventional wind turbines not designed to stand up to such speeds.

Many Alaskan utilities have set up voluntary goals to reach 70% or 80% renewable penetration within the next 8 to 10 years.  Kodiak Electric Association, which serves Kodiak Island on the southern coast of Alaska, reports that it has achieved 99.7% renewable energy penetration so far in 2014, using a hybrid wind/hydro/diesel/battery/flywheel microgrid.

Mainland U.S. utilities could learn a lot from the innovators up north, where the smart grid is already delivering on the promise of a more cost-effective and sustainable power grid today.

 

Cautiously, Private Utilities Dip Toes into Microgrid Pool

— December 16, 2014

Lawrence Berkeley National Laboratory statistics show that 80% to 90% of all grid failures begin at the distribution level of electricity service.  While utilities can resolve these issues through a variety of technologies, their historic bias against the concept of intentional islanding – or cutting off certain systems from the wider grid – has precluded them from considering microgrids in the past.

That has changed over the last 3 years.  The extreme storms that pounded the East Coast beginning in 2011 have led the states of Connecticut, Maryland, Massachusetts, New York, and New Jersey to initiate resiliency programs that promote microgrids as a key element of their strategy.

Unfortunately, the concept of community resiliency or public purpose microgrids often violates utility franchise rules, since power would have to be sent over public rights of ways.  Connecting, for example, a gas station to a high school serving as an emergency shelter and a hospital could get the operator of this impromptu microgrid in trouble.

So, by way of necessity, utilities clearly have to play a role in these kinds of microgrids.  Furthermore, the hype about the utility death spiral is prompting many utilities to examine new regulatory structures and business models to accommodate the growth in third-party distributed energy resources (DER).

The Revolution Will Be Distributed

As a result, Navigant Research has issued a new report, Utility Distribution Microgrids (or UDMs).  While public power UDMs – both grid-tied and remote – are a larger market today and are expected to be in the future than systems deployed by investor-owned utilities (IOUs), the most interesting segment are these latter private systems, due to the regulatory issues they raise and because these large companies tend to move markets.

In conversations with utilities, the messages I’ve heard have changed dramatically.  When I initially researched this topic more than 2 years ago, the biggest concern about microgrids revolved around technology and intentional islanding, a concept that was anathema to utilities whose grid codes were designed to prevent customers from sealing themselves off from the larger distribution grids.  Worker safety, loss of customer load, and stranded investments in centralized generation also came up.

Today, many utilities cite these same issues, but growing numbers realize the DER revolution is picking up momentum and that microgrids that are owned or controlled by utilities could help them fulfill their mission to provide low-cost, reliable power.

Convincing the Regulators

The IOUs exploring microgrids include Arizona Public Service, Consolidated Edison, Duke Energy, NRG Energy, and San Diego Gas & Electric.  The primary challenge for an IOU today in implementing a UDM is justifying a microgrid under traditional rate-based regulation.  How can the utility convince state regulators that investing ratepayer funds into a project that directly benefits a small subset of customers will also benefit the wider customer base?  Even if a valid business case can be made, the typical 3-year rate case state regulatory proceeding business model may retard near-term innovation.

This IOU UDM segment offers the largest potential growth of any UDM segment, since it helps address the need for new technology solutions to address explosive growth in DER.  But it also faces the largest regulatory question marks.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Microgrids","path":"\/tag\/microgrids","date":"3\/6\/2015"}