Navigant Research Blog

California Sets an Ambitious Energy Agenda

— January 9, 2015

Living in California, it’s easy to forget that the rest of the world doesn’t always see things in the same way.  Given the ambitious energy and climate change goals outlined in Governor Brown’s inaugural address on January 5, this divergence may only grow.

What exactly did the governor propose?  Here’s a snapshot summary of targets he set for the state by 2030:

  • Increase from one-third to one-half the portion of the state’s electricity derived from renewable sources
  • Reduce today’s petroleum use in cars and trucks by up to 50%
  • Double the efficiency of energy use in existing buildings while also making building heating fuels cleaner

The Center of Innovation

For investors in and developers of clean energy technology, Brown’s targets mean that California will continue to lead the United States in terms of R&D and commercialization of renewable energy, electric vehicles, and smart building automation products.

Perhaps the biggest surprise for skeptics of Left Coast policy aspirations is that data suggests California is likely to meet its AB 32 goal of reducing emissions of greenhouse gases to 431 million tons by 2020.  While the rest of the world continues to heat up and multilateral emissions reductions efforts by the United Nations in Lima, Peru late last year once again faltered, the only U.S. state to pass climate legislation with concrete objectives appears to be on its way to actually reaching those targets, despite a long list of hiccups and controversies.

Changing the Game

Will California meet Brown’s new goals?  That’s impossible to predict, but the real questions now lie in the details.  I, for one, was delighted to see the governor mention microgrids, since apparently he agrees that distributed renewables (such as rooftop solar PV) will be game changers.  The best way to transform such distributed energy resources from problems for the grid into solutions for climate change – including resilient communities that can keep the lights on during extreme weather events – is through the islanding capabilities of microgrids.

When I first started covering wind power in the ‘80s for the national trade press, I often dealt with skeptical East Coast editors.  “Do those wind turbines really work?” they would ask.  “Isn’t that just one of those California things?”  This was, of course, during Brown’s original tenure as governor, when he was dubbed Governor Moonbeam by the national press.  From a handful of wind farms jump-started by flawed but effective tax credits, a global industry was spawned that now generates an accumulated 321,559 MW of electrical capacity, or just under 3% of the world’s total electricity, according to Navigant Research’s most recent World Market Update report on the wind industry.  That’s up from less than 1% of California’s total electricity in 1985, 30 years ago.

Sometimes, the only way to leap forward is to go out on a limb on the policy front, and then see if entrepreneurs and capital markets are up to the task.  Only time will tell which is the wiser course – the prudent go-slow pace of national politics or the risk-taking adventure being drawn up in Sacramento.  I know where I’m placing my bets.

 

Alaska Leads the World in Microgrid Deployments

— December 17, 2014

Many utilities view microgrids as a threat, due to intentional islanding and/or the effects of reduced customer load on long-term revenue projections.  However, a small but growing number of utilities view the microgrids they own and operate – known as utility distribution microgrids (UDMs) – as the next logical extension of their efforts to deploy smart grid technology.  As I’ve noted earlier, the developed world can learn interesting lessons in this field from the developing world.

Navigant Research’s new report, Utility Distribution Microgrids, shows that the total UDM market represents over $2.4 billion of economic activity today, with the bulk of this investment flowing into projects located in the Asia Pacific region.  As noted in an earlier report, Microgrids, North America is the overall market leader.  Yet, when it comes to utilities, both Asia Pacific and Europe are ahead in near-term deployments and related implementation revenues.  All told, under the base scenario, Navigant Research expects the UDM market to reach $5.8 billion in annual revenue by 2023, growing at a compound annual rate (CAGR) of 10.2%.

However, there’s one important exception to this market generalization: Alaska.

Across the Tundra

“Over the last decade, Alaska has quietly emerged as a global leader in the development and operation of microgrids,” declared Gwen Holdmann, director of the Alaska Center for Energy and Power at the University of Alaska Fairbanks, in a recent interview.  A particular focus has been hybrid conventional-renewable-storage systems, networks that have “logged more than 2 million hours of continuous operating experience for these types of systems,” according to Holdmann.  The state boasts a portfolio of somewhere between 200 and 250 permanently islanded microgrids ranging from 30 kW – about the size of a city block – to large remote hydro systems over 100 MW in size.  These microgrids, many in operation for over 50 years, provide electric power service exclusively to isolated rural populations.  Total capacity exceeds 800 MW, the largest installed base of microgrids in the world today (though China may overtake Alaska by the end of next year).

Holdmann clearly takes pride in what Alaska has accomplished with these scattered, isolated hybrid power systems, which tap fuels as diverse as wind, solar, hydro, biomass, and tidal currents, along with diesel.  While other pundits may point to New York, California, or Hawaii as the centers of North American microgrid development, Alaska has been developing cutting-edge microgrids for quite some time.  “The State of Alaska alone has invested over $250 million in developing and integrating renewable energy projects to serve these microgrids, – far more per capita than any other state in the country,” Holdmann said.

Integration Experts

The advent of advanced technology deployment to these rural systems has forced Alaska utilities and developers to become expert in microgrid development and operation.  By far the greatest challenge was, and remains, the high-penetration integration of intermittent renewables, such as solar, wind, and hydrokinetic, with traditional diesel or natural gas fueled electric power generation.  Nevertheless, Alaskans have repeatedly achieved higher renewable penetration levels than nearly any other place in the world, under incredibly harsh conditions, including daylight hours that shrink to a couple hours a day in the winter and winds that can exceed 100 miles an hour – enough to literally tear apart many conventional wind turbines not designed to stand up to such speeds.

Many Alaskan utilities have set up voluntary goals to reach 70% or 80% renewable penetration within the next 8 to 10 years.  Kodiak Electric Association, which serves Kodiak Island on the southern coast of Alaska, reports that it has achieved 99.7% renewable energy penetration so far in 2014, using a hybrid wind/hydro/diesel/battery/flywheel microgrid.

Mainland U.S. utilities could learn a lot from the innovators up north, where the smart grid is already delivering on the promise of a more cost-effective and sustainable power grid today.

 

Cautiously, Private Utilities Dip Toes into Microgrid Pool

— December 16, 2014

Lawrence Berkeley National Laboratory statistics show that 80% to 90% of all grid failures begin at the distribution level of electricity service.  While utilities can resolve these issues through a variety of technologies, their historic bias against the concept of intentional islanding – or cutting off certain systems from the wider grid – has precluded them from considering microgrids in the past.

That has changed over the last 3 years.  The extreme storms that pounded the East Coast beginning in 2011 have led the states of Connecticut, Maryland, Massachusetts, New York, and New Jersey to initiate resiliency programs that promote microgrids as a key element of their strategy.

Unfortunately, the concept of community resiliency or public purpose microgrids often violates utility franchise rules, since power would have to be sent over public rights of ways.  Connecting, for example, a gas station to a high school serving as an emergency shelter and a hospital could get the operator of this impromptu microgrid in trouble.

So, by way of necessity, utilities clearly have to play a role in these kinds of microgrids.  Furthermore, the hype about the utility death spiral is prompting many utilities to examine new regulatory structures and business models to accommodate the growth in third-party distributed energy resources (DER).

The Revolution Will Be Distributed

As a result, Navigant Research has issued a new report, Utility Distribution Microgrids (or UDMs).  While public power UDMs – both grid-tied and remote – are a larger market today and are expected to be in the future than systems deployed by investor-owned utilities (IOUs), the most interesting segment are these latter private systems, due to the regulatory issues they raise and because these large companies tend to move markets.

In conversations with utilities, the messages I’ve heard have changed dramatically.  When I initially researched this topic more than 2 years ago, the biggest concern about microgrids revolved around technology and intentional islanding, a concept that was anathema to utilities whose grid codes were designed to prevent customers from sealing themselves off from the larger distribution grids.  Worker safety, loss of customer load, and stranded investments in centralized generation also came up.

Today, many utilities cite these same issues, but growing numbers realize the DER revolution is picking up momentum and that microgrids that are owned or controlled by utilities could help them fulfill their mission to provide low-cost, reliable power.

Convincing the Regulators

The IOUs exploring microgrids include Arizona Public Service, Consolidated Edison, Duke Energy, NRG Energy, and San Diego Gas & Electric.  The primary challenge for an IOU today in implementing a UDM is justifying a microgrid under traditional rate-based regulation.  How can the utility convince state regulators that investing ratepayer funds into a project that directly benefits a small subset of customers will also benefit the wider customer base?  Even if a valid business case can be made, the typical 3-year rate case state regulatory proceeding business model may retard near-term innovation.

This IOU UDM segment offers the largest potential growth of any UDM segment, since it helps address the need for new technology solutions to address explosive growth in DER.  But it also faces the largest regulatory question marks.

 

Wireless Power Could Transform Smart Building Nanogrids

— October 6, 2014

From mobile phones to Wi-Fi, wireless communications have fundamentally changed human behavior.  As the much hyped era of the Internet of Things looms, the dense, rich communication networks needed seem to only be possible using wireless networks.  Moreover, big data requires ever more data to be collected and shared.  In buildings, this means more sensors and more communications to enable better efficiency.  Though wireless communications are poised to facilitate this transformation, the shift remains tangled in the wired status quo.

In addition to communications, building networks need power to create what Navigant Research has defined as nanogrids, which are, in essence, single-building microgrids capable of aggregating and optimizing distributed energy resources (DER) while increasing resilience thanks to their ability to island during utility power grid outages.  Running power wires to sensors is costly in new construction and prohibitive in most existing buildings.  As a result, it’s not done unless absolutely necessary.  Wireless makes the communication side of the equation easily scalable.  The incremental cost for connecting more sensors is small.  But, if a sensor needs wired power, why would anyone invest in wireless communications?  Power remains the key to unlocking greater data density in smart buildings, and thereby, expanding near-term opportunities for nanogrid applications.

Get Low

One approach to reducing the cost of sensors is lowering the cost of power wiring rather than eliminating the wire all together.  This is accomplished by using low-voltage direct current (DC) power for sensors, controllers, actuators, and even LED lighting.  Low-power DC wiring doesn’t need to be installed by an electrician, reducing the installation cost.  Also, many electronic devices are natively DC-powered.  So alternating current (AC) power must first be converted, resulting in an efficiency loss.  Moreover, onsite generation of power through solar PV panels or wind turbines is typically DC (as are battery storage devices).  So, DC distribution within buildings helps match energy supply with loads (since according to some estimates, 80% of building loads such as LED lighting, laptops, and cellphone chargers are all natively DC).  Low-power DC in buildings can serve as building blocks to nanogrids that tailor energy services to the precise needs of end users.

The push for DC power is being led by the Emerge Alliance, an industry association developing DC power distribution standards for commercial buildings.  A competing solution can be found in Power over Ethernet.  Both solutions can be cheaper to install than a traditional system.  But, though low power is less intrusive than the status quo, wires remain a limiting factor.

Power from High Frequencies

Eliminating all wires is the most elegant solution to enable the transition to more data-rich buildings.  Currently, this is being done either by installing batteries or by harvesting ambient energy to power devices.  Batteries require replacement and, when examined on a cost per kilowatt-hour basis, are very expensive.  They just don’t provide enough benefit to eliminate power wires.  Energy harvesting, on the other hand, eliminates the maintenance requirement but is restricted by the ambient light available.

However, a shift from energy harvesting to wireless power transmission is on the horizon.  Ossia, a tech startup, has demoed its Cota wireless power technology and expects to have commercially available products by the end of 2015.  Cota works by broadcasting radio waves over the 2.4 to 2.485 GHz ISM band (the same as Wi-Fi, ZigBee, Bluetooth, and others) and is capable of transmitting about 1W of power up to 10 meters – enough for a sensor, but not much else.  Even a decade from now, it’s unlikely that wireless power transfer or energy harvesting will be able to provide enough power for anything more than a sensor.  But leveraging big data in buildings requires more sensors, many more than are currently deployed.  Wireless power could be the building block that brings the Internet of Things to smart buildings and hasten the spread of nanogrids.

For a more detailed look at the nanogrid market, please join our free webinar, The Expanding Business of Nanogrids, on Tuesday, October 14 at 2 p.m. ET.  Click here to register.

 

Blog Articles

Most Recent

By Date

Tags

Clean Transportation, Electric Vehicles, Policy & Regulation, Renewable Energy, Smart Energy Practice, Smart Energy Program, Smart Grid Practice, Smart Transportation Practice, Smart Transportation Program, Utility Innovations

By Author


{"userID":"","pageName":"Microgrids","path":"\/tag\/microgrids","date":"2\/1\/2015"}